scholarly journals In Vitro Amphidiploid Induction of A Distant Hybrid Populus Simonii × P. Euphratica Cv. ‘Xiaohuyang-2’ and its Effect on Plant Morphology and Anatomy

Author(s):  
Xiao-Xiao Zhang ◽  
Ying Zhang ◽  
Xiao-Tong Cui ◽  
Dai-Li Li ◽  
Heng-Yue Zhang ◽  
...  

Abstract In plants, highly gametic sterility of distant hybrids usually restricts their utilization in breeding programs. Amphidiploid induction produced by somatic chromosome doubling of distant hybrids can effectively restore their gametic fertility. In this study, nodal-segment and leaf explants of a distant hybrid Populus simonii × P. euphratica cv. ‘Xiaohuyang-2’ were used to induce chromosome doubling with colchicine in vitro. Although chromosome doubling of the nodal-segment explants only produced mixoploids, the treatments of leaf explants on adventitious bud regeneration medium successfully produced 4 amphidiploids, which might be attributed to the direct organogenesis of the adventitious buds on the leaf explants. The highest amphidiploid induction frequency was 16.7%. Both the explant survival rate and polyploidization frequency were significantly affected by colchicine concentration and exposure time. The amphidiploid plants were significantly differed from the diploid and mixoploid plants on morphological and anatomical characteristics. They had larger, thicker, and greener leaves than the diploids and mixoploids. The changes of stomatal features also accompanied with increase of ploidy level. The induced amphidiploid plants of the distant hybrid ‘Xiaohuyang-2’ are expected to play important roles in breeding programs of Populus in future, which can be used as a bridge parent with ability of unreduced gamete formation to cross with fast-growth germplasms to produce triploids pyramiding desirable traits of fast growth, easy cutting propagation, and salt and drought tolerances.

2016 ◽  
Vol 25 (2) ◽  
pp. 193-205 ◽  
Author(s):  
Khosro Balilashaki ◽  
Maryam Vahedi ◽  
Roghayeh Karimi

An efficient and reproducible procedure for the direct regeneration of phalaenopsis cv. ‘Surabaya’ using of nodal explants and leaf segments derived from in vitro flower stalk was conducted. Three experiments were carried out for shoot development and subsequent plant regeneration: Direct shoot regeneration from nodal explants of Phalaenopsis cv. ‘Surabaya’ flower stalks on MS added with different combination of NAA and BAP, direct regeneration of protocormlike bodies (PLBs) from leaf explants in a MS with different concentrations of the TDZ, acclimatization of regenerated plantlets in different mixture of components and nutrients. The results showed that 5 mg/l BAP and 2 mg/l NAA were most effective concentration for shoot regeneration, regenerated shoots were cultured on half strength of MS containing activated charcoal, IAA and NAA at various concentrations, highest number of root (6.7) was obtained in higher concentration of NAA (2 mg/l). TDZ induced a higher frequency of embryogenesis from leaf explants than BAP, the highest number of embryos per explant was 22.45 at 3 mg/l TDZ. Altogether, BAP at higher concentration (10 mg/l) with 1 mg/l NAA had the highest enhancement on the amount of direct embryogenesis. In our investigation 87.20% plantlets via nodal explants survived acclimatization process in medium containing cocopeat and coal (1 : 1). The survival rate of regenerated plantlets via nodal explants (82.07%) was more than of regenerated plantlets via leaf explants (70.47). This protocol provides the basis for further investigation on micropropagation and breeding programs in Phalaenopsis cv. ‘Surabaya’.Plant Tissue Cult. & Biotech. 25(2): 193-205, 2015 (December)


2017 ◽  
Vol 27 (2) ◽  
pp. 207-216
Author(s):  
Tanjina Akhtar Banu ◽  
Barna Goswami ◽  
Shahina Akter ◽  
Mousona Islam ◽  
Tammana Tanjin ◽  
...  

An efficient rapid in vitro regeneration protocol was described from nodal segment, leaf and petiole explants. MS medium supplemented with 1.0 mg/l BAP and 0.5 mg/l IAA was found best for the multiple shoot formation from nodal segments. In this combination 99% explants produced multiple shoots and the average number of shoots per explants was 20.1 ± 1.96. For petiole and leaf explants best response was observed on MS supplemented with 2.0 mg/l BAP, 1 mg/l IAA and 0.5 mg/l Kn. Petiole explants produced highest mean number of shoots/explant (22.9 ± 1.728) among the three explants when the explants were cultured on MS with 2.0 mg/l BAP, 1 mg/l IAA and 0.5 mg/l Kn. The highest frequency of root induction (100%) and mean number of roots/plantlets (11.75) were obtained on MS. The rooted plantlets were transferred for hardening following acclimatization and finally were successfully established in the field.Plant Tissue Cult. & Biotech. 27(2): 207-216, 2017 (December)


HortScience ◽  
2009 ◽  
Vol 44 (7) ◽  
pp. 1957-1961 ◽  
Author(s):  
Elisabeth M. Meyer ◽  
Darren H. Touchell ◽  
Thomas G. Ranney

Hypericum L. H2003-004-016 is a complex hybrid among Hypericum frondosum Michx., Hypericum galioides Lam., and Hypericum kalmianum L. and exhibits valuable ornamental characteristics, including compact habit, bluish green foliage, and showy flowers. Inducing polyploidy may further enhance the ornamental traits of this hybrid and provide new opportunities for hybridizing with other naturally occurring polyploid Hypericum sp. In this study, in vitro shoot regeneration and treatment of regenerative callus with the dinitroaniline herbicide oryzalin (3,5-dinitro-N4,N4-dipropylsufanilamide) were investigated as a means of inducing allopolyploidy. First, in vitro regeneration was optimized for callus and shoot induction by culture of leaf explants on medium supplemented with benzylamino purine (BA) or meta-topolin (mT) at 5, 10, or 15 μM in combination with indoleacetic acid (IAA) at 0, 1.25, 2.5, or 5 μM. Both BA and mT treatments successfully induced regenerative callus and shoots. Multiple regression analysis estimated maximum regenerative callus (94%) and shoot induction (18 shoots per explant) in medium supplemented with 5 μM BA and 3.75 μM IAA. In the second part of the study, exposure of regenerative callus to oryzalin at 0, 7.5, 15, 30, 60, or 90 μM for durations of 3, 6, or 9 d was investigated for polyploid induction. There was no survival for any of the calli in the 60- or 90-μM oryzalin treatments, but calli subjected to the other treatments exhibited some survival and polyploid induction. Duration had no effect on callus survival or ploidy level, but oryzalin concentration was a significant factor in both. The greatest percentage (44%) of polyploids was induced with 30 μM oryzalin. Spontaneous chromosome doubling was observed in 8% of control explants receiving no oryzalin treatment.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1918
Author(s):  
Qinggui Wu ◽  
Honglin Yang ◽  
Yulin Yang ◽  
Jinyu He ◽  
Erga Aer ◽  
...  

This work was aimed at establishing an effective approach for in vitro propagation of Ajuga lupulina Maxim, a medicinal and ornamental plant mainly found in eastern Xizang, in the western Sichuan region of China. We report an optimum response in the proliferation of axillary shoots from nodal segment explants (10.2 shoots/explant) on MS medium containing 3.0 mg L−1 of 6-benzyladenine (BA). When BA and TDZ individually or in combination with NAA were employed for adventitious shoot regeneration, shoots and embryo-like structures (ELSs) were noted in the callus from leaf explants. The maximum response of 26.4 shoots /explant (81.6%) and 12.0 ELSs/explant were ascertained on MS medium with 4.0 mg L−1 TDZ and 0.1 mg L−1 NAA. The leaf despite browning still demonstrated a high regeneration capacity. TDZ (2.0 mg L−1) and BA (2.0 mg L−1) along with NAA (0.01 mg L−1) were found to perform well for shoot regeneration via callus from shoot tip explants. The best for rooting was MS medium (half-strength) containing indole-3-butyric acid (IBA: 1.5 mg L−1) and (NAA: 0.5 mg L−1) with the maximum number of roots (25.8 per shoot) and the highest rooting frequency (81.71%). The survival of the plantlets in the greenhouse was 78.2% indicative of successful acclimatization. This work is the first report of a consistent, definitive, and unique protocol for A. lupulina regeneration, paving the way for the in vitro preservation of such significant genetic resources and also further allied systems based on such callus-based or embryo-based approaches.


HortScience ◽  
2009 ◽  
Vol 44 (2) ◽  
pp. 523-525 ◽  
Author(s):  
Kazuhiko Mitsukuri ◽  
Takaya Arita ◽  
Masahumi Johkan ◽  
Satoshi Yamasaki ◽  
Kei-ichiro Mishiba ◽  
...  

Habenaria radiata is a terrestrial orchid with beautiful bird-shaped petals. The wild H. radiata population has been severely affected by environmental disruption and overexploitation. In micropropagation of H. radiata, although aseptic germination has been studied, tissue culture methods have not yet been established. Shoot apexes and leaf explants from vegetative plants and flower stalks, stolons, and floret explants from reproductive plants were chosen for this study. Explants were cultured on half-strength inorganic salts and full-strength vitamins of Murashige and Skoog (1/2 MS) medium containing 30 g·L−1 sucrose, 8 g·L−1 agar (pH 5.6) supplemented with 4.44 μM N6-benzyladenine, and 0.54 μM α-naphthaleneacetic acid. After 8 weeks of culture, the highest survival rate was obtained with floret explants excised from plants at the reproductive phase. In floret culture, the number of adventitious bud formation per explant was 5.4 per upper floret and 4.0 per lower floret. Dark preconditioning, which inhibited browning and contamination, of explants before shoot apex culture increased survival rates of explants (53%) and bud formation (83%). Consequently, a tissue culture method using florets and shoot apexes as explant material was established for H. radiata.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1120G-1120
Author(s):  
J. L. Jacobs ◽  
C. T. Stephens

Several growth hormone combinations and silver nitrate concentrations were examined for their effect on regeneration of different pepper genotypes. Primary leaf explants from in vitro seedlings were cultured on a revised Murashige and Skoog medium supplemented with auxin, cytokinin and 1.6% glucose. Combinations of different concentrations of indole-3-acetic acid (IAA), 0-5 mg/l, and 6-benzylaminopurine (BAP), 0-5 mg/l, were tested to determine the most effective medium for shoot primordium formation. Experiments with IAA and BAP did not result in a specific growth hormone combination appropriate for regeneration of all genotypes tested. Of the silver nitrate concentrations tested, 10 mg/l resulted in the best shoot and leaf differentiation and reduced callus formation. Differences in organogenic response of individual genotypes were evaluated on a single regeneration medium. Whole plants were regenerated from 11 of 63 genotypes examined. Based on these experiments, a reproducible regeneration system for pepper was developed with a total of 500 plants regenerated to date.


Sign in / Sign up

Export Citation Format

Share Document