scholarly journals Vital signs of severe COVID-19 patients during inter-hospital helicopter transfer

Author(s):  
Cornelis Slagt ◽  
Eduard Johannes Spoelder ◽  
Marijn Cornelia Theresia Tacken ◽  
Maartje Frijlink ◽  
Sjoerd Servaas ◽  
...  

Abstract Background: During the COVID-19 pandemic in The Netherlands, critically ill ventilated COVID-19 patients were transferred not only between hospitals by ambulance but also by the Helicopter Emergency Medical Service (HEMS). To date, little is known about the impact of helicopter transport on critically ill patients and COVID-19 patients in particular. This study was conducted to explore the impact of inter-hospital helicopter transfer on vital signs of mechanically ventilated severe COVID-19 intensive care patients, with special focus on take-off, midflight, and landing.Methods: All ventilated critically ill COVID-19 patients who were transported between April 2020 and June 2021 by the Dutch ‘Lifeliner 5’ HEMS team and who were fully monitored, including noninvasive cardiac output, were included in this study. Three 10-minute timeframes (take-off, midflight and landing) were defined for analysis. Continuous data on the vital parameters heart rate, peripheral oxygen saturation, arterial blood pressure, end-tidal CO2 and noninvasive cardiac output using electrical cardiometry were collected and stored at 1-minute intervals. Data were analydzed for differences over time within the timeframes using 1-way analysis of variance. Significant differences were checked for clinical relevance.Results: Ninety-eight patients were included in the analysis. During take-off, an increase was noticed in cardiac output (from 6.7 to 8.1 Lmin-1; P<0.0001), which was determined by a decrease in systemic vascular resistance (from 1068 to 750 dyne·s·cm−5, P<0.0001) accompanied by an increase in stroke volume (from 92.0 to 110.2 ml, P<0.0001). Other parameters were unchanged during take-off and mid-flight. During landing, cardiac output and stroke volume slightly decreased (from 7.9 to 7.1 Lmin-1, P<0.0001 and from 108.3 to 100.6 ml, P<0.0001, respectively), and total systemic vascular resistance increased (P<0.0001). Though statistically significant, the found changes were small and not clinically relevant to the medical status of the patients as judged by the attending physicians.Conclusions: Interhospital helicopter transfer of ventilated intensive care patients with COVID-19 can be performed safely and does not result in clinically relevant changes in vital signs.This study was assessed by the medical ethical committee Arnhem-Nijmegen, the Netherlands (identifier 2021-7313). The committee waived the need for informed consent. The study was registered at www.trialregister.nl (identifier NL9307).

2021 ◽  
Author(s):  
Cornelis Slagt ◽  
Eduard Johannes Spoelder ◽  
Marijn Cornelia Theresia Tacken ◽  
Maartje Frijlink ◽  
Sjoerd Servaas ◽  
...  

Abstract Background: During the COVID-19 pandemic in The Netherlands, critically ill ventilated COVID-19 patients were not only transferred between hospitals by ambulance, but also by the Helicopter Emergency Medical Service (HEMS). To date, little is known about the impact of helicopter transport on critically ill patients, and COVID-19 patients in particular. This study was conducted to explore the impact of inter-hospital helicopter transfer on vital signs of mechanically ventilated severe COVID-19 intensive care patients, with special focus on take-off, midflight, and landing. Methods: All ventilated critically ill COVID-19 patients who were transported between April 2020 and June 2021 by the Dutch ‘Lifeliner 5’ HEMS team and who were fully monitored including non-invasive cardiac output, were included in this study. Three 10 minute timeframes (take-off, midflight and landing) were defined for analysis. Continuous data of vital parameters heartrate, peripheral oxygen saturation, arterial blood pressure, end-tidal CO2 and non-invasive cardiac output using electrical cardiometry were collected and stored at a 1 minute interval. Data were analysed for differences over time within the timeframes using 1-way analysis of variance. Significant differences were checked for clinical relevance. Results: Ninety-eight patients were included in the analysis. During take-off an increase was noticed in cardiac output (from 6.7 to 8.1 Lmin-1; P<0.0001) which was determined by a decrease in systemic vascular resistance (from 1068 to 750 dyne·s·cm−5, P<0.0001) accompanied by an increase in stroke volume (from 92.0 to 110.2 ml, P<0.0001). Other parameters were unchanged during take-off and mid-flight. During the landing cardiac output and stroke volume slightly decreased (from 7.9 to 7.1 Lmin-1, P<0.0001 and from 108.3 to 100.6 ml, P<0.0001 respectively) and total systemic vascular resistance increased (P<0.0001). Though statistically significant, the found changes were small and not clinically relevant to the medical status of the patients as judged by the attending physicians. Conclusions: Interhospital helicopter transfer of ventilated intensive care patients with COVID-19 can be performed safely and does not result in clinically relevant changes in vital signs. This study this has been assessed by the medical ethical committee Arnhem-Nijmegen, the Netherlands (identifier 2021-7313). The committee waived the need for informed consent. The study was registered at www.trialregister.nl (identifier NL9307).


1994 ◽  
Vol 3 (5) ◽  
pp. 382-386 ◽  
Author(s):  
CL Ostrow ◽  
E Hupp ◽  
D Topjian

BACKGROUND: Although we have insufficient knowledge about the effects of Trendelenburg positions on various hemodynamic parameters, these positions are frequently used to influence cardiac output and blood pressure in critically ill patients. OBJECTIVES: To determine the effect of Trendelenburg and modified Trendelenburg positions on five dependent variables: cardiac output, cardiac index, mean arterial pressure, systemic vascular resistance, and oxygenation in critically ill patients. METHODS: In this preliminary study subjects were 23 cardiac surgery patients (mean age, 55; SD, 8.09) who had a pulmonary artery catheter for cardiac output determination and who were clinically stable, normovolemic and normotensive. Baseline measurements of the dependent variables were taken in the supine position. Patients were then placed in 10 degrees Trendelenburg or 30 degrees modified Trendelenburg position. The dependent variables were measured after 10 minutes in each position. A 2-period, 2-treatment crossover design with a preliminary baseline measurement was used. RESULTS: Five subjects were unable to tolerate Trendelenburg position because of nausea or pain in the sternal incision. In the 18 who were able to tolerate both position changes, no statistically significant changes were found in the five dependent variables. Changes in systemic vascular resistance over time approached statistical significance and warrant further study. CONCLUSIONS: This preliminary study does not provide support for Trendelenburg positions as a means to influence hemodynamic parameters such as cardiac output and blood pressure in normovolemic and normotensive patients.


1987 ◽  
Vol 253 (1) ◽  
pp. H126-H132
Author(s):  
R. W. Lee ◽  
L. D. Lancaster ◽  
D. Buckley ◽  
S. Goldman

To determine whether changes in the venous circulation were responsible for preload-afterload mismatch with angiotensin, we examined the changes in the heart and the peripheral circulation in six splenectomized dogs after ganglion blockade during an angiotensin infusion to increase mean aortic pressure 25 and then 50%. The peripheral circulation was evaluated by measuring mean circulatory filling pressure (MCFP), arterial compliance, and venous compliance. A 25% increase in mean aortic pressure increased MCFP from 6.2 +/- 0.3 to 7.6 +/- 0.3 mmHg (P less than 0.001) but did not change cardiac output, heart rate, or stroke volume. Systemic vascular resistance increased (P less than 0.01) from 0.50 +/- 0.02 to 0.59 +/- 0.03 mmHg X min X kg X ml-1. Arterial and venous compliances decreased (P less than 0.01) from 0.08 +/- 0.03 to 0.06 +/- 0.03 ml X mmHg-1 X kg-1 and from 2.1 +/- 0.1 to 1.6 +/- 0.1 ml X mmHg-1 X kg-1, respectively. A 50% elevation in mean aortic pressure increased MCFP from 7.1 +/- 0.4 to 9.5 +/- 0.9 mmHg (P less than 0.001) but did not change heart rate. At this level of aortic pressure, cardiac output and stroke volume decreased (P less than 0.01) 12 and 19%, respectively, whereas systemic vascular resistance increased (P less than 0.001) from 0.48 +/- 0.03 to 0.83 +/- 0.05 mmHg X min X kg X ml-1. Arterial and venous compliances decreased (P less than 0.01) from 0.08 +/- 0.01 to 0.05 +/- 0.01 ml X mmHg-1 X kg-1 and from 2.1 +/- 0.1 to 1.4 +/- 0.1 ml X mmHg-1 X kg-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


2008 ◽  
Vol 108 (5) ◽  
pp. 802-811 ◽  
Author(s):  
Robert A. Dyer ◽  
Jenna L. Piercy ◽  
Anthony R. Reed ◽  
Carl J. Lombard ◽  
Leann K. Schoeman ◽  
...  

Background Hemodynamic responses to spinal anesthesia (SA) for cesarean delivery in patients with severe preeclampsia are poorly understood. This study used a beat-by-beat monitor of cardiac output (CO) to characterize the response to SA. The hypothesis was that CO would decrease from baseline values by less than 20%. Methods Fifteen patients with severe preeclampsia consented to an observational study. The monitor employed used pulse wave form analysis to estimate nominal stroke volume. Calibration was by lithium dilution. CO and systemic vascular resistance were derived from the measured stroke volume, heart rate, and mean arterial pressure. In addition, the hemodynamic effects of phenylephrine, the response to delivery and oxytocin, and hemodynamics during recovery from SA were recorded. Hemodynamic values were averaged for defined time intervals before, during, and after SA. Results Cardiac output remained stable from induction of SA until the time of request for analgesia. Mean arterial pressure and systemic vascular resistance decreased significantly from the time of adoption of the supine position until the end of surgery. After oxytocin administration, systemic vascular resistance decreased and heart rate and CO increased. Phenylephrine, 50 mug, increased mean arterial pressure to above target values and did not significantly change CO. At the time of recovery from SA, there were no clinically relevant changes from baseline hemodynamic values. Conclusions Spinal anesthesia in severe preeclampsia was associated with clinically insignificant changes in CO. Phenylephrine restored mean arterial pressure but did not increase maternal CO. Oxytocin caused transient marked hypotension, tachycardia, and increases in CO.


Hypertension ◽  
2020 ◽  
Vol 76 (2) ◽  
pp. 373-380 ◽  
Author(s):  
Lizzy M. Brewster ◽  
Yentl C. Haan ◽  
Aeilko H. Zwinderman ◽  
Bert Jan van den Born ◽  
Gert A. van Montfrans

The ATP-regenerating enzyme CK (creatine kinase) is strongly associated with blood pressure, which lowers upon experimental CK inhibition. The enzyme is thought to affect cardiovascular hemodynamics through enhanced systemic vascular resistance, stroke volume, and cardiac contractility, but data on these parameters are lacking. We hereby report hemodynamics by CK levels in the multiethnic, cross-sectional HELIUS study (Healthy Life in an Urban Setting). Physical examination included sitting brachial blood pressure and noninvasively assessed supine systemic vascular resistance, stroke volume, cardiac output, and cardiac contractility, which we associated with resting plasma CK. Data from 14 937 men and women (mean age, 43.3; SD, 12.9) indicated that per log CK increase, blood pressure increased with 20.2 (18.9–21.4) mm Hg systolic/13.0 (12.2–13.7) diastolic, an odds ratio for hypertension of 6.1 (5.1–7.2). Outcomes were similar by sex, body mass index, and ancestry, although higher blood pressures in men, with overweight/obesity, and West-African ancestry were partially explained by higher CK, with an adjusted increase in systolic/diastolic pressure of 10.5 (10.0–10.9)/6.4 (6.0–6.7) mm Hg per log CK increase. Systemic vascular resistance, stroke volume, cardiac output, and cardiac contractility (n=7876), increased by respectively 20%, 39%, 14%, and 23% SD per log CK increase. This study indicates that the association of CK with blood pressure likely results from an increase in systemic vascular resistance and stroke volume. These data expand the knowledge on the nature of hypertension associated with CK and may inform further experiments on CK inhibition as a means to lower blood pressure.


1998 ◽  
Vol 94 (4) ◽  
pp. 347-352 ◽  
Author(s):  
W. Wieling ◽  
J. J. Van Lieshout ◽  
A. D. J. Ten Harkel

1. The initial circulatory adjustments induced by head-up tilt and tilt-back were investigated in six healthy subjects (aged 30–58 years) and six patients with orthostatic hypotension due to pure autonomic failure (aged 33–65 years). 2. Continuous responses of finger arterial pressure and heart rate were recorded by Finapres. A pulse contour algorithm applied to the arterial pressure waveform was used to compute stroke volume responses. 3. In the healthy subjects, head-up tilt induced gradual circulatory adjustments. After 1 min upright stroke volume and cardiac output had decreased by 39 ± 9% and 26 ± 10% respectively. Little change in mean blood pressure at heart level (+1 ± 7 mmHg) indicated that systemic vascular resistance had increased by 39 ± 24%. The gradual responses to head-up tilt contrasted with the pronounced and rapid circulatory responses upon tilt-back. After 2–3 s a rapid increase in stroke volume (from 62 ± 8% to 106 ± 10%) and cardiac output (from 81 ± 11% to 118 ± 20%) was observed with an overshoot of mean arterial pressure above supine control values of 16 ± 3 mmHg at 7 s. In the patients a progressive fall in blood pressure on head-up tilt was observed. After 1 min upright mean blood pressure had decreased by 59 ± 8 mmHg. No change in systemic vascular resistance and a larger decrease in stroke volume (60 ± 7%) and cardiac output (53 ± 8%) were found. On tilt-back a gradual recovery of blood pressure was observed. 4. In healthy humans upon head-up tilt neural compensatory mechanisms are very effective in maintaining arterial pressure at heart level. The gradual circulatory adjustments to head-up tilt in healthy subjects contrast with the pronounced and abrupt circulatory changes on tilt-back. In patients with a lack of neural circulatory reflex adjustments, gradual blood pressure decreases to head-up tilt and gradual increases to tilt-back are observed.


ANALES RANM ◽  
2020 ◽  
Vol 137 (137(02)) ◽  
pp. 154-160
Author(s):  
Ester Zamarrón ◽  
Carlos Carpio ◽  
Ana Santiago ◽  
Sergio Alcolea ◽  
Juan Carlos Figueira ◽  
...  

Objectives: to assess the impact of non-invasive respiratory therapies in critically ill patients diagnosed with COVID-19. Methods: retrospective cohort study of COVID-19 hospitalized patients who required non-invasive respiratory support. The impact of these treatments was evaluated in three groups of patients: pre-intensive care patients, discharged patients from critical care unit (CCU) and non-CCU admitted patients. The impact was assessed 30 days after completing respiratory therapy and was categorized as hospital discharge, transfer to a rehabilitation center, admission to the UCC and deceased. Results: a total of 80 patients were included (average age: 65.9 ± 11.9; men = 45 [56.3%]). 29 (36.3%) patients received BIPAP, 35 (43.8%) CPAP and 27 (33.4%) high-oxygen nasal cannula. Regarding the groups for the indication of respiratory treatment, 37 (46.3%) patients corresponded to the pre-intensive care patients, 24 (30%) were discharged patients from the CCU and 19 (23.8%) to the non-CCU admitted group. In the pre-intensive care, admission to a CCU was avoided in 19 (52.8%) patients and, on the other hand, 14 (38.9%) patients finally were admitted in a CCU. In the group of discharged patients from the UCC 19 (82.6%) patients showed a favorable course of disease. Only 3 (13%) patients were admitted in a UCC or died. Finally, in the group of non-CCU admitted, 6 (31.3%) improved after the use of respiratory therapy and 13 (68.4%) were deceased. Conclusions: respiratory therapies have a favorable impact on critically ill patients affected by COVID-19, both in patients with an indication for admission in the CCU, in those who are discharged from the CCUs and in those who do not have criteria for admission in these units.


1985 ◽  
Vol 58 (1) ◽  
pp. 200-205 ◽  
Author(s):  
M. Muzi ◽  
T. J. Ebert ◽  
F. E. Tristani ◽  
D. C. Jeutter ◽  
J. A. Barney ◽  
...  

Although impedance cardiography provides safe and reliable noninvasive estimates of stroke volume in humans, its usefulness is limited by the necessity for subjects to be apneic and motionless. In an effort to circumvent this restriction we studied the validity of ensemble-averaging of impedance data in exercising normal subjects and in intensive-care patients. The correlation coefficient (r value) between 128 ensemble-averaged and standard hand-digitized determinations of stroke volume index from the same records taken during rest and exercise in six normal male subjects was +0.97 (P less than 0.001). The r value for ensemble-averaged stroke volume indices during free breathing and breath hold in the same subjects was +0.92 (P less than 0.001), suggesting that breath hold did not significantly affect the stroke volume estimation. In 14 freely breathing hospital intensive-care patients the r value between simultaneous thermodilution cardiac output readings and ensemble-averaged impedance determinations was +0.87 (P less than 0.01). The results indicate that ensemble-averaging of transthoracic impedance data provides waveforms from which reliable estimates of cardiac output can be made during normal respiration in healthy human subjects at rest and exercise and in critically ill patients.


Sign in / Sign up

Export Citation Format

Share Document