scholarly journals Einstein-Roscoe Regression for the Slag Viscosity Prediction Problem in Steelmaking

Author(s):  
Hiroto Saigo ◽  
K.C. Dukka Bahadur ◽  
Noritaka Saito

Abstract In classical machine learning, regressors are trained without attempting to gain insight into the mechanism connecting inputs and outputs. Natural sciences, however, are interested in finding a robust interpretable function for the target phenomenon, that can return predictions even outside of the training domains. This paper focuses on viscosity prediction problem in steelmaking, and proposes Einstein-Roscoe regression (ERR), which learns the coefficients of the Einstein-Roscoe equation, and is able to extrapolate to unseen domains. Besides, it is often the case in the natural sciences that some measurements are much more expensive than the others due to physical constraints. To this end, we employ a transfer learning framework based on Gaussian process, which allows us to estimate the regression parameters using the auxiliary measurements available in a reasonable cost. In experiments using the viscosity measurements in high temperature slag system, ERR is compared favorably with various machine learning approaches in interpolation settings, while outperformed all of them in extrapolation settings. Furthermore, after estimating parameters using the auxiliary dataset obtained at room temperature, increase in accuracy is observed in the high temperature dataset, which corroborates the effectiveness of the proposed approach.

2021 ◽  
Vol 9 ◽  
Author(s):  
Cameron Hoerig ◽  
Jamshid Ghaboussi ◽  
Yiliang Wang ◽  
Michael F. Insana

The Autoprogressive Method (AutoP) is a fundamentally different approach to solving the inverse problem in quasi-static ultrasonic elastography (QUSE). By exploiting the nonlinear adaptability of artificial neural networks and physical constraints imposed through finite element analysis, AutoP is able to build patient specific soft-computational material models from a relatively sparse set of force-displacement measurement data. Physics-guided, data-driven models offer a new path to the discovery of mechanical properties most effective for diagnostic imaging. AutoP was originally applied to modeling mechanical properties of materials in geotechnical and civil engineering applications. The method was later adapted to reconstructing maps of linear-elastic material properties for cancer imaging applications. Previous articles describing AutoP focused on high-level concepts to explain the mechanisms driving the training process. In this review, we focus on AutoP as applied to QUSE to present a more thorough explanation of the ways in which the method fundamentally differs from classic model-based and other machine learning approaches. We build intuition for the method through analogy to conventional optimization methods and explore how maps of stresses and strains are extracted from force-displacement measurements in a model-free way. In addition, we discuss a physics-based regularization term unique to AutoP that illuminates the comparison to typical optimization procedures. The insights gained from our hybrid inverse method will hopefully inspire others to explore combinations of rigorous mathematical techniques and conservation principles with the power of machine learning to solve difficult inverse problems.


2019 ◽  
Vol 70 (3) ◽  
pp. 214-224
Author(s):  
Bui Ngoc Dung ◽  
Manh Dzung Lai ◽  
Tran Vu Hieu ◽  
Nguyen Binh T. H.

Video surveillance is emerging research field of intelligent transport systems. This paper presents some techniques which use machine learning and computer vision in vehicles detection and tracking. Firstly the machine learning approaches using Haar-like features and Ada-Boost algorithm for vehicle detection are presented. Secondly approaches to detect vehicles using the background subtraction method based on Gaussian Mixture Model and to track vehicles using optical flow and multiple Kalman filters were given. The method takes advantages of distinguish and tracking multiple vehicles individually. The experimental results demonstrate high accurately of the method.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2019 ◽  
Author(s):  
Oskar Flygare ◽  
Jesper Enander ◽  
Erik Andersson ◽  
Brjánn Ljótsson ◽  
Volen Z Ivanov ◽  
...  

**Background:** Previous attempts to identify predictors of treatment outcomes in body dysmorphic disorder (BDD) have yielded inconsistent findings. One way to increase precision and clinical utility could be to use machine learning methods, which can incorporate multiple non-linear associations in prediction models. **Methods:** This study used a random forests machine learning approach to test if it is possible to reliably predict remission from BDD in a sample of 88 individuals that had received internet-delivered cognitive behavioral therapy for BDD. The random forest models were compared to traditional logistic regression analyses. **Results:** Random forests correctly identified 78% of participants as remitters or non-remitters at post-treatment. The accuracy of prediction was lower in subsequent follow-ups (68%, 66% and 61% correctly classified at 3-, 12- and 24-month follow-ups, respectively). Depressive symptoms, treatment credibility, working alliance, and initial severity of BDD were among the most important predictors at the beginning of treatment. By contrast, the logistic regression models did not identify consistent and strong predictors of remission from BDD. **Conclusions:** The results provide initial support for the clinical utility of machine learning approaches in the prediction of outcomes of patients with BDD. **Trial registration:** ClinicalTrials.gov ID: NCT02010619.


Sign in / Sign up

Export Citation Format

Share Document