scholarly journals Dynamical systems implementation of intrinsic sentence meaning

Author(s):  
Hermann Moisl

Abstract This paper proposes a model for implementation of intrinsic natural language sentence meaning in a physical language understanding system, where 'intrinsic' is understood as 'independent of meaning ascription by system-external observers'. The proposal is that intrinsic meaning can be implemented as a point attractor in the state space of a nonlinear dynamical system with feedback which is generated by temporally sequenced inputs. It is motivated by John Searle's well known (1980) critique of the then-standard and currently still influential Computational Theory of Mind (CTM), the essence of which was that CTM representations lack intrinsic meaning because that meaning is dependent on ascription by an observer. The proposed dynamical model comprises a collection of interacting artificial neural networks, and constitutes a radical simplification of the principle of compositional phrase structure which is at the heart of the current standard view of sentence semantics because it is computationally interpretable as a finite state machine.

2020 ◽  
Vol 22 (4) ◽  
pp. 983-990
Author(s):  
Konrad Mnich

AbstractIn this work we analyze the behavior of a nonlinear dynamical system using a probabilistic approach. We focus on the coexistence of solutions and we check how the changes in the parameters of excitation influence the dynamics of the system. For the demonstration we use the Duffing oscillator with the tuned mass absorber. We mention the numerous attractors present in such a system and describe how they were found with the method based on the basin stability concept.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1794
Author(s):  
Hilmy Awad ◽  
Ehab H. E. Bayoumi ◽  
Hisham M. Soliman ◽  
Michele De Santis

This paper introduces a new ellipsoidal-based tracker design to control a grid-connected hybrid direct current/alternating current (DC/AC) microgrid (MG). The proposed controller is robust against both parameters and load variations. The studied hybrid MG is modelled as a nonlinear dynamical system. A linearized model around an operating point is developed. The parameter changes are modelled as norm-bounded uncertainties. We apply the new extended version of the attractive (or invariant) ellipsoid for this tracking problem. Convex optimization is used to obtain the region’s minimal size where the tracking error between the state trajectories and the reference states converges. The sufficient conditions for stability are derived and solved based on linear matrix inequalities (LMIs). The proposed controller’s validity is shown via simulating the hybrid MG with various operational scenarios. In each scenario, the performance of the controller is compared with a recently proposed sliding mode controller. The comparison clearly illustrates the superiority of the developed controller in terms of transient and steady-state responses.


1980 ◽  
Vol 3 (1) ◽  
pp. 63-73 ◽  
Author(s):  
J. A. Fodor

AbstractThe paper explores the distinction between two doctrines, both of which inform theory construction in much of modern cognitive psychology: the representational theory of mind and the computational theory of mind. According to the former, propositional attitudes are to be construed as relations that organisms bear to mental representations. According to the latter, mental processes have access only to formal (nonsemantic) properties of the mental representations over which they are defined.The following claims are defended: (1) That the traditional dispute between “rational” and “naturalistic” psychology is plausibly viewed as an argument about the status of the computational theory of mind. Rational psychologists accept a formality condition on the specification of mental processes; naturalists do not. (2) That to accept the formality condition is to endorse a version of methodological solipsism. (3) That the acceptance of some such condition is warranted, at least for that part of psychology which concerns itself with theories of the mental causation of behavior. This is because: (4) such theories require nontransparent taxonomies of mental states; and (5) nontransparent taxonomies individuate mental states without reference to their semantic properties. Equivalently, (6) nontransparent taxonomies respect the way that the organism represents the object of its propositional attitudes to itself, and it is this representation which functions in the causation of behavior.The final section of the paper considers the prospect for a naturalistic psychology: one which defines its generalizations over relations between mental representations and their environmental causes, thus seeking to account for the semantic properties of propositional attitudes. Two related arguments are proposed, both leading to the conclusion that no such research strategy is likely to prove fruitful.


2006 ◽  
Vol 06 (01) ◽  
pp. L7-L15
Author(s):  
ALEXANDROS LEONTITSIS

The paper introduces a method for estimation and reduction of calendar effects from time series, which their fluctuations are governed by a nonlinear dynamical system and additive normal noise. Calendar effects can be considered deviations of the distribution(s) of particular group(s) of observations that have a common characteristic related to the calendar. The concept of this method is the following: since the calendar effects are not related to the dynamics of the time series, the accurate estimation and reduction will result a time series with a smaller amount of noise level (i.e. more accurate dynamics). The main tool of this method is the correlation integral, due to its inherit capability of modeling both the dynamics and the additive normal noise. Experimental results are presented on the Nasdaq Cmp. index.


2001 ◽  
Author(s):  
Martijn A. van den Berg ◽  
Michael M. J. Proot ◽  
Peter G. Bakker

Abstract The present paper describes the genesis of a horseshoe vortex in the symmetry plane in front of a juncture. In contrast to a previous topological investigation, the presence of the obstacle is no longer physically modelled. Instead, the pressure gradient, induced by the obstacle, has been used to represent its influence. Consequently, the results of this investigation can be applied to any symmetrical flow above a flat plate. The genesis of the vortical structure is analysed by using the theory of nonlinear differential equations and the bifurcation theory. In particular, the genesis of a horseshoe vortex can be described by the unfolding of the degenerate singularity resulting from a Jordan Normal Form with three vanishing eigenvalues and one linear term which is related to the adverse pressure gradient. The examination of this nonlinear dynamical system reveals that a horseshoe vortex emanates from a non-separating flow through two subsequent saddle-node bifurcations in different directions and the transition of a node into a focus located in the flow field.


Sign in / Sign up

Export Citation Format

Share Document