scholarly journals A Diversity-Aware Memetic Algorithm for the Linear Ordering Problem: Improving Best-Known Solutions for Standard Benchmarks

Author(s):  
Lázaro Lugo ◽  
Carlos Segura ◽  
Gara Miranda

Abstract The Linear Ordering Problem (LOP) is a very popular NP-hard combinatorial optimization problem with many practical applications that may require the use of large instances. The Linear Ordering Library (LOLIB) gathers a set of standard benchmarks widely used in the validation of solvers for the LOP. Among them, the xLOLIB2 collects some of the largest and most challenging instances in current literature. In this work, we present new best-known solutions for each of the 200 complex instances that comprises xLOLIB2. Moreover, the proposal devised in this research is able to achieve all current best-known solutions in the rest of instances of LOLIB and improve them in other 93 cases out of 485, meaning that important advances in terms of quality and robustness are attained. This important advance in the field of the LOP has been possible thanks to the development of a novel Memetic Algorithm (MA) that was designed by taking into account some of the weaknesses of state-of-the-art LOP solvers. One of the keys to success is that the novel proposal allows for a gradual shift from exploration to exploitation, which is done by taking into account the stopping criterion and elapsed period of execution to alter the internal decisions taken by the optimizer. The novel diversity-aware proposal is called the Memetic Algorithm with Explicit Diversity Management (MA-EDM) and extensive comparisons against state-of-the-art techniques provide insights into the reasons for the superiority of MA-EDM.

Author(s):  
Héctor Joaquín Fraire Huacuja ◽  
Guadalupe Castilla Valdez ◽  
Claudia G. Gómez Santillan ◽  
Juan Javier González Barbosa ◽  
Rodolfo A. Pazos R. ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 316
Author(s):  
Marco Montemurro ◽  
Erica Pontonio ◽  
Rossana Coda ◽  
Carlo Giuseppe Rizzello

Due to the increasing demand for milk alternatives, related to both health and ethical needs, plant-based yogurt-like products have been widely explored in recent years. With the main goal to obtain snacks similar to the conventional yogurt in terms of textural and sensory properties and ability to host viable lactic acid bacteria for a long-time storage, several plant-derived ingredients (e.g., cereals, pseudocereals, legumes, and fruits) as well as technological solutions (e.g., enzymatic and thermal treatments) have been investigated. The central role of fermentation in yogurt-like production led to specific selections of lactic acid bacteria strains to be used as starters to guarantee optimal textural (e.g., through the synthesis of exo-polysaccharydes), nutritional (high protein digestibility and low content of anti-nutritional compounds), and functional (synthesis of bioactive compounds) features of the products. This review provides an overview of the novel insights on fermented yogurt-like products. The state-of-the-art on the use of unconventional ingredients, traditional and innovative biotechnological processes, and the effects of fermentation on the textural, nutritional, functional, and sensory features, and the shelf life are described. The supplementation of prebiotics and probiotics and the related health effects are also reviewed.


2021 ◽  
Vol 11 (3) ◽  
pp. 1093
Author(s):  
Jeonghyun Lee ◽  
Sangkyun Lee

Convolutional neural networks (CNNs) have achieved tremendous success in solving complex classification problems. Motivated by this success, there have been proposed various compression methods for downsizing the CNNs to deploy them on resource-constrained embedded systems. However, a new type of vulnerability of compressed CNNs known as the adversarial examples has been discovered recently, which is critical for security-sensitive systems because the adversarial examples can cause malfunction of CNNs and can be crafted easily in many cases. In this paper, we proposed a compression framework to produce compressed CNNs robust against such adversarial examples. To achieve the goal, our framework uses both pruning and knowledge distillation with adversarial training. We formulate our framework as an optimization problem and provide a solution algorithm based on the proximal gradient method, which is more memory-efficient than the popular ADMM-based compression approaches. In experiments, we show that our framework can improve the trade-off between adversarial robustness and compression rate compared to the existing state-of-the-art adversarial pruning approach.


1991 ◽  
Vol 15 (3-4) ◽  
pp. 357-379
Author(s):  
Tien Huynh ◽  
Leo Joskowicz ◽  
Catherine Lassez ◽  
Jean-Louis Lassez

We address the problem of building intelligent systems to reason about linear arithmetic constraints. We develop, along the lines of Logic Programming, a unifying framework based on the concept of Parametric Queries and a quasi-dual generalization of the classical Linear Programming optimization problem. Variable (quantifier) elimination is the key underlying operation which provides an oracle to answer all queries and plays a role similar to Resolution in Logic Programming. We discuss three methods for variable elimination, compare their feasibility, and establish their applicability. We then address practical issues of solvability and canonical representation, as well as dynamical updates and feedback. In particular, we show how the quasi-dual formulation can be used to achieve the discriminating characteristics of the classical Fourier algorithm regarding solvability, detection of implicit equalities and, in case of unsolvability, the detection of minimal unsolvable subsets. We illustrate the relevance of our approach with examples from the domain of spatial reasoning and demonstrate its viability with empirical results from two practical applications: computation of canonical forms and convex hull construction.


2019 ◽  
Vol 87 (3) ◽  
pp. 20 ◽  
Author(s):  
Miléna Lengyel ◽  
Nikolett Kállai-Szabó ◽  
Vince Antal ◽  
András József Laki ◽  
István Antal

Microparticles, microspheres, and microcapsules are widely used constituents of multiparticulate drug delivery systems, offering both therapeutic and technological advantages. Microparticles are generally in the 1–1000 µm size range, serve as multiunit drug delivery systems with well-defined physiological and pharmacokinetic benefits in order to improve the effectiveness, tolerability, and patient compliance. This paper reviews their evolution, significance, and formulation factors (excipients and procedures), as well as their most important practical applications (inhaled insulin, liposomal preparations). The article presents the most important structures of microparticles (microspheres, microcapsules, coated pellets, etc.), interpreted with microscopic images too. The most significant production processes (spray drying, extrusion, coacervation, freeze-drying, microfluidics), the drug release mechanisms, and the commonly used excipients, the characterization, and the novel drug delivery systems (microbubbles, microsponges), as well as the preparations used in therapy are discussed in detail.


2015 ◽  
Vol 241 (3) ◽  
pp. 686-696 ◽  
Author(s):  
Josu Ceberio ◽  
Alexander Mendiburu ◽  
Jose A. Lozano

Sign in / Sign up

Export Citation Format

Share Document