scholarly journals Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery

2019 ◽  
Vol 87 (3) ◽  
pp. 20 ◽  
Author(s):  
Miléna Lengyel ◽  
Nikolett Kállai-Szabó ◽  
Vince Antal ◽  
András József Laki ◽  
István Antal

Microparticles, microspheres, and microcapsules are widely used constituents of multiparticulate drug delivery systems, offering both therapeutic and technological advantages. Microparticles are generally in the 1–1000 µm size range, serve as multiunit drug delivery systems with well-defined physiological and pharmacokinetic benefits in order to improve the effectiveness, tolerability, and patient compliance. This paper reviews their evolution, significance, and formulation factors (excipients and procedures), as well as their most important practical applications (inhaled insulin, liposomal preparations). The article presents the most important structures of microparticles (microspheres, microcapsules, coated pellets, etc.), interpreted with microscopic images too. The most significant production processes (spray drying, extrusion, coacervation, freeze-drying, microfluidics), the drug release mechanisms, and the commonly used excipients, the characterization, and the novel drug delivery systems (microbubbles, microsponges), as well as the preparations used in therapy are discussed in detail.

Author(s):  
Tushar N. Sonawane ◽  
Pradip D. Dhangar ◽  
Sagar D Patil ◽  
Azam Z. Shaikh

Novel Drug Delivery Systems are one of the widely use delivery system in the presence scenario. Novel drug delivery system is a novel approach to drug delivery that addresses the limitations of the traditional drug delivery systems. In the form of a Novel Drug Delivery System an existing drug molecule can get a new life. The novel drug delivery system is Increases bioavailability and it Can be used for long-term treatments of chronic illness, Sustained maintenance of plasma drug levels as well as it Decreased adverse drug effects in the total amount of drugs required thus reducing side effects it Improved patient compliance due to reduction in number and frequency of doses required. There is less damage sustained by normal tissue due to targeted drug delivery. In this paper our main focus to give the throughout knowledge of some newer (Novel drug delivery system) to understand the concept of the Novel dossage form.


Author(s):  
Deepika Purohit ◽  
Deeksha Manchanda ◽  
Manish ◽  
Jyoti Rathi ◽  
Ravinder Verma ◽  
...  

Background: Compared to traditional dosage methods, the novel drug delivery systems (NDDS) provide various advantages. In the last few years, tremendous focus has been given to work focused on the novel drug delivery methods for small and large molecular drug carriers utilizing particulate drug delivery systems as well. It is evident from last decade as seen in number of patents cited in this field that the technology has evolved tremendously. Objective: Drug carriers utilized by this novel technology includes liposomes, dendrimers, polymeric nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, carbon nanomaterials. Various forms of polymers have been used in the production of nanocarriers. Methods: Nanocarriers are colloidal system varying in size from 10 to 1000 nm. This technology now used to identify, manage and monitor numerous diseases and physical methods to alter and enhance the pharmacokinetic and pharmacodynamic properties of specific types of drug molecules. Results: Nanoparticles can be formulated by a number of techniques including ionic gelation, cross-linking, coacervation/precipitation, nanoprecipitation, spray drying, emulsion- droplet coalescence, nano sonication techniques etc. Several methods are used with which these nanoparticles can be characterized. These methods include nuclear magnetic resonance, optical microscopy, atomic force microscopy, photon correlation spectroscopy and electron microscopy, surface charge, in-vitro drug release, etc. Conclusion: In the present review, authors have tried to summarize the recent advances in the field of pharmaceutical nanotechnology and also focuses on the application and new patents in the area related to NDDS.


2021 ◽  
pp. 1-22
Author(s):  
Rakesh K Sindhu ◽  
Harnoor Kaur ◽  
Manish Kumar ◽  
Moksha Sofat ◽  
Evren Algın Yapar ◽  
...  

2019 ◽  
Vol 24 (43) ◽  
pp. 5086-5107 ◽  
Author(s):  
Mohini Mishra ◽  
Pramod Kumar ◽  
Jitendra Singh Rajawat ◽  
Ruchi Malik ◽  
Gitanjali Sharma ◽  
...  

Growing interest in the field of nanotechnology has led to its emergence in the field of medicine too. Nanomedicines encompass the various medical tools, diagnostic agents and the drug delivery vehicles being evolved with the advancements in the aura of nanotechnology. This review emphasizes on providing a cursory literature on the past events that led to the procession of nanomedicines, various novel drug delivery systems describing their structural features along with the pros and cons associated with them and the nanodrugs that made a move to the clinical practice. It also focuses on the need of the novel drug delivery systems and the challenges faced by the conventional drug delivery systems.


Author(s):  
Umme Hani ◽  
Yogish Kumar Honnavalli ◽  
Yasmin Begum M ◽  
Sabina Yasmin ◽  
Riyaz Ali M. Osmani ◽  
...  

2020 ◽  
Vol 26 ◽  
Author(s):  
Ritu Mishra ◽  
Swati Gupta

Background: Rheumatoid arthritis (RA) is the most common occurring progressive, autoimmune disease, affecting 1% of the population and the ratio of affected women is three times as compared to men in most developing countries. Clinical manifestations of RA are the presence of anti-citrullinated protein antibody (ACPA) and rheumatoid factor (RF) in blood, tendered joints and soreness of the muscles. Some other factors which may lead to chronic inflammation are genetic and environmental factors as well as adaptive immune response. Several conventional drugs are available for the treatment of RA but have their own drawbacks which can be overcome by the use of novel drug delivery systems. : The objective of the present review is to focus on the molecular pathogenesis of the disease and its current conventional treatment with special reference to the role of novel drug delivery systems encapsulating anti rheumatic drugs and herbal drugs in passive and receptor mediated active targeting against RA. On reviewing the conventional and current therapeutics agains RA, we conclude that, although the current therapy for the treatment of RA is capable enough, yet more advances in the field of targeted drug delivery will sanguinely result in effective and appropriate treatment of this autoimmune disease.


2015 ◽  
Vol 16 (4) ◽  
pp. 344-364 ◽  
Author(s):  
Zerrin Bayindir ◽  
Nilufer Yuksel

2017 ◽  
Vol 18 (11) ◽  
Author(s):  
Rohit R. Bhosale ◽  
H. V. Gangadharappa ◽  
Umme Hani ◽  
Riyaz Ali M. Osmani ◽  
Rudra Vaghela ◽  
...  

2020 ◽  
Vol 17 ◽  
Author(s):  
Neeraj Mittal ◽  
Varun Garg ◽  
Sanjay Kumar Bhadada ◽  
O. P. Katare

: The corona virus disease 2019 (COVID-19) has found its roots from Wuhan (China). COVID-19 is caused by a novel corona virus SARS-CoV2, previously named as 2019-nCoV. COVID-19 has spread across the globe and declared as pandemic by World health organization (WHO) on 11th March, 2020. Currently, there is no standard drug or vaccine available for the treatment, so repurposing of existing drugs is the only solution. Novel drug delivery systems (NDDS) will be boon for the repurposing of drugs. The role of various NDDS in repurposing of existing drugs for treatment of various viral diseases and their relevance in COVID-19 has discussed in this paper. It focuses on the currently ongoing research in the implementation of NDDS in COVID-19. Moreover it describes the role of NDDS in vaccine development for COVID-19. This paper also emphasizes how NDDS will help to develop the improved delivery systems (dosage forms) of existing therapeutic agents and also explore the new insights to find out the void spaces for a potential targeted delivery. So in these tough times, NDDS and nanotechnology can be a safeguard to humanity.


Sign in / Sign up

Export Citation Format

Share Document