scholarly journals Immune Prognostic Implications of PSMD14 and its Associated Genes Signatures in Hepatocellular Carcinoma

Author(s):  
tian chuan ◽  
Abudoureyimu Mubalake ◽  
Lin xinrong ◽  
Zhou hao ◽  
Chu Xiaoyuan ◽  
...  

Abstract Background: PSMD14 played a vital roles initiation and progression of hepatocellular carcinoma (HCC). However, PSMD14 and its-related genes for the immune prognostic implications of HCC patients have rarely been analyzed. Therefore, we aimed to explore gene signatures and immune prognostic values of PSMD14 and its-related genes in HCC.Methods: Analyzed the expression of PSMD14 in multiple databases, and clinicopathologic characteristics associated with PSMD14 overall survival using Wilcoxon signed-ranktest, logistic and Cox regression, Kaplan-Meier method. An immune prognostic signature (including RBM45, PSMD1, OLA1, CCT6A, LCAT and IVD) was constructed and validated using the co-expression and cox regression analyses in TCGA, ICGC and TIMER datasets and CIBERSORT computational methods. Gene Set Enrichment Analysis (GSEA) was performed using TCGA data set. RT-PCR further validates the expression of seven immune genes in Hepatocellular carcinoma cells.Results: Increased PSMD14 expression in HCC was significantly associated with poor prognosis and clinicopathologic characteristics (grade, histologic stage, surgical approach and T stage, all p-values < 0.05 ). A total of six PSMD14-related genes were detected, which markedly related to overall survival and immune infiltrating levels in HCC patients. Using cox regression analysis, the PSMD14 and its-related genes were found to be an independent prognostic factor for HCC survival. Calibration curves confirmed good consistency between clinical nomogram prediction and actual observation. Immune prognostic model suggests that patients in the high‐risk group shown significantly poorer survival than patients in the low‐risk group.Conclusion: We screened potential immune prognostic genes and constructed and verified a novel PSMD14-based prognostic model of HCC, which provides new potential prognostic biomarkers and therapeutic targets and lays a theoretical foundation for immunotherapy of HCC.

2020 ◽  
Author(s):  
Chuan Tian ◽  
Mubalake Abudoureyimu ◽  
Xinrong Lin ◽  
Hao Zhou ◽  
Xiaoyuan Chu ◽  
...  

Abstract Background PSMD14 played a vital roles initiation and progression of hepatocellular carcinoma (HCC). However, PSMD14 and its-related genes for the immune prognostic implications of HCC patients have rarely been analyzed. Therefore, we aimed to explore gene signatures and immune prognostic values of PSMD14 and its-related genes in HCC. Method Analyzed the expression of PSMD14 in multiple databases, and clinicopathologic characteristics associated with PSMD14 overall survival using Wilcoxon signed-ranktest, logistic and Cox regression, Kaplan-Meier method. An immune prognostic signature (including RBM45, PSMD1, OLA1, CCT6A, LCAT and IVD) was constructed and validated using the co-expression and cox regression analyses in TCGA, ICGC and TIMER datasets. Gene Set Enrichment Analysis (GSEA) was performed using TCGA data set. Results Increased PSMD14 expression in HCC was significantly associated with poor prognosis and clinicopathologic characteristics (grade, histologic stage, surgical approach and T stage, all p-values < 0.05). A total of six PSMD14-related genes were detected, which markedly related to overall survival and immune infiltrating levels in HCC patients. Using cox regression analysis, the PSMD14 and its-related genes were found to be an independent prognostic factor for HCC survival. Calibration curves confirmed good consistency between clinical nomogram prediction and actual observation. Immune prognostic model suggests that patients in the high‐risk group shown significantly poorer survival than patients in the low‐risk group. Conclusion We screened potential immune prognostic genes and constructed and verified a novel PSMD14-based prognostic model of HCC, which provides new potential prognostic biomarkers and therapeutic targets and lays a theoretical foundation for immunotherapy of HCC.


2020 ◽  
Author(s):  
Tian Chuan ◽  
Abudoureyimu Mubalake ◽  
Lin Xinrong ◽  
Zhou Hao ◽  
Chu Xiaoyuan ◽  
...  

Abstract BackgroundPSMD14 played a vital roles initiation and progression of hepatocellular carcinoma (HCC). However, PSMD14 and its-related genes for the immune prognostic implications of HCC patients have rarely been analyzed. Therefore, we aimed to explore gene signatures and immune prognostic values of PSMD14 and its-related genes in HCC.MethodsAnalyzed the expression of PSMD14 in multiple databases, and clinicopathologic characteristics associated with PSMD14 overall survival using Wilcoxon signed-ranktest, logistic and Cox regression, Kaplan-Meier method. An immune prognostic signature (including RBM45, PSMD1, OLA1, CCT6A, LCAT and IVD) was constructed and validated using the co-expression and cox regression analyses in TCGA, ICGC and TIMER datasets and CIBERSORT computational methods. Gene Set Enrichment Analysis (GSEA) was performed using TCGA data set. RT-PCR further validates the expression of seven immune genes in Hepatocellular carcinoma cells.ResultsIncreased PSMD14 expression in HCC was significantly associated with poor prognosis and clinicopathologic characteristics (grade, histologic stage, surgical approach and T stage, all p-values < 0.05 ). A total of six PSMD14-related genes were detected, which markedly related to overall survival and immune infiltrating levels in HCC patients. Using cox regression analysis, the PSMD14 and its-related genes were found to be an independent prognostic factor for HCC survival. Calibration curves confirmed good consistency between clinical nomogram prediction and actual observation. Immune prognostic model suggests that patients in the high‐risk group shown significantly poorer survival than patients in the low‐risk group.ConclusionWe screened potential immune prognostic genes and constructed and verified a novel PSMD14-based prognostic model of HCC, which provides new potential prognostic biomarkers and therapeutic targets and lays a theoretical foundation for immunotherapy of HCC.


2020 ◽  
Author(s):  
Ye Liu ◽  
Zhixiang Qin ◽  
Hai Yang ◽  
Yang Gu ◽  
Kun Li

Abstract Background Hepatocellular carcinoma (HCC) represents one of the deadliest malignancies worldwide. Despite significant advances in diagnosis and treatment, the mortality rate from HCC persists at a substantial level. This research strives to establish a prognostic model based on the RNA binding proteins (RBPs) that can predict HCC patients’ OS. Methods There was an RNA-seq data set derived from the Cancer Genome Atlas (TCGA) databank which was included in our research as well as a Microarray data set (GSE14520). The differentially expressed RBPs between HCC and normal tissues were investigated in TCGA dataset. Subsequently, the TCGA data set was randomly split into a training and a testing cohort. The prognostic model of the training cohort was developed by applying univariate Cox regression and lasso Cox regression analyses and multivariate Cox regression analysis. In order to evaluate the prognostic value of the model, a comprehensive survival assessment was conducted. Results A total of 133 differentially expressed RBPs were identified. Five RBPs (RPL10L, EZH2, PPARGC1A, ZNF239, IFIT1) were used to construct the model. The model accurately predicted the prognosis of liver cancer patients in both the TCGA cohort and the GSE14520 validation cohort. HCC patients could be assigned into a high-risk group and a low-risk group by this model, and the overall survival of these two groups was significantly different. Furthermore, the risk scores obtained by our model were highly correlated with immune cell infiltration. . Conclusions Five RBPs-related prognostic models were constructed and validated to predict OS reliably in HCC individuals. It helps to identify patients at high risk of mortality with the risk prediction score, which optimizes personalized therapeutic decision-making.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2020 ◽  
Author(s):  
Andi Ma ◽  
Yukai Sun ◽  
Racheal O. Ogbodu ◽  
Ling Xiao ◽  
Haibing Deng ◽  
...  

Abstract Background: It is well known that long non-coding RNAs (lncRNAs) play a vital role in cancer. We aimed to explore the prognostic value of potential immune-related lncRNAs in hepatocellular carcinoma (HCC). Methods: Validated the established lncRNA signature of 343 patients with HCC from The Cancer Genome Atlas (TCGA) and 81 samples from Gene Expression Omnibus (GEO). Immune-related lncRNAs for HCC prognosis were evaluated using Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) analyses. LASSO analysis was performed to calculate a risk score formula to explore the difference in overall survival between high- and low-risk groups in TCGA, which was verified using GEO, Gene Ontology (GO), and pathway-enrichment analysis. These analyses were used to identify the function of screened genes and construct a co-expression network of these genes. Results: Using computational difference algorithms and lasso Cox regression analysis, the differentially expressed and survival-related immune-related genes (IRGs) among patients with HCC were established as five novel immune-related lncRNA signatures (AC099850.3, AL031985.3, PRRT3-AS1, AC023157.3, MSC-AS1). Patients in the low‐risk group showed significantly better survival than patients in the high‐risk group ( P = 3.033e−05). The signature identified can be an effective prognostic factor to predict patient survival. The nomogram showed some clinical net benefits predicted by overall survival. In order to explore its underlying mechanism, several methods of enrichment were elucidated using Gene Set Enrichment Analysis. Conclusion: Identifying five immune-related lncRNA signatures has important clinical implications for predicting patient outcome and guiding tailored therapy for patients with HCC with further prospective validation.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11273
Author(s):  
Lei Yang ◽  
Weilong Yin ◽  
Xuechen Liu ◽  
Fangcun Li ◽  
Li Ma ◽  
...  

Background Hepatocellular carcinoma (HCC) is considered to be a malignant tumor with a high incidence and a high mortality. Accurate prognostic models are urgently needed. The present study was aimed at screening the critical genes for prognosis of HCC. Methods The GSE25097, GSE14520, GSE36376 and GSE76427 datasets were obtained from Gene Expression Omnibus (GEO). We used GEO2R to screen differentially expressed genes (DEGs). A protein-protein interaction network of the DEGs was constructed by Cytoscape in order to find hub genes by module analysis. The Metascape was performed to discover biological functions and pathway enrichment of DEGs. MCODE components were calculated to construct a module complex of DEGs. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. ONCOMINE was employed to assess the mRNA expression levels of key genes in HCC, and the survival analysis was conducted using the array from The Cancer Genome Atlas (TCGA) of HCC. Then, the LASSO Cox regression model was performed to establish and identify the prognostic gene signature. We validated the prognostic value of the gene signature in the TCGA cohort. Results We screened out 10 hub genes which were all up-regulated in HCC tissue. They mainly enrich in mitotic cell cycle process. The GSEA results showed that these data sets had good enrichment score and significance in the cell cycle pathway. Each candidate gene may be an indicator of prognostic factors in the development of HCC. However, hub genes expression was weekly associated with overall survival in HCC patients. LASSO Cox regression analysis validated a five-gene signature (including CDC20, CCNB2, NCAPG, ASPM and NUSAP1). These results suggest that five-gene signature model may provide clues for clinical prognostic biomarker of HCC.


2021 ◽  
Author(s):  
Cheng Lijing ◽  
Yuan Meiling ◽  
Li Shu ◽  
Chen Junjing ◽  
Zhong Shupeng ◽  
...  

Abstract Background: Brain glioblastoma (GBM) is the most common primary malignant tumor of intracranial tumors. The prognosis of this disease is extremely poor. While the introduction of IFN-β regimen in the treatment of gliomas has significantly improved the outcome of patients, the underlying mechanism remains to be elucidated. Materials and methods: mRNA expression profiles and clinicopathological data were downloaded from TCGA-GBM and GSE83300 data set from the GEO. Univariate Cox regression analysis and lasso Cox regression model established a novel four‐gene IFN-β signature (including PRDX1, SEC61B, XRCC5, and BCL2L2) for GBM prognosis prediction. Further, GBM samples (n=50) and normal brain tissues (n=50) were then used for real-time polymerase chain reaction (PCR) experiments. Gene Set Enrichment Analyses (GSEA) was performed to further understand the underlying molecular mechanisms. Pearson correlation was applied to calculate the correlation between the lncRNAs and IFN-β associated genes. A lncRNA with a correlation coefficient |R2| > 0.3 and P < 0.05 was considered to be an IFN-β associated lncRNA.Results: Patients in the high‐risk group shown significantly poorer survival than patients in the low‐risk group. The signature was found to be an independent prognostic factor for GBM survival. Furthermore, GSEA revealed several significantly enriched pathways, which might help explain the underlying mechanisms. Our study identified a novel robust four‐gene IFN-β signature for GBM prognosis prediction. The signature might contain potential biomarkers for metabolic therapy and treatment response prediction in GBM.Conclusions: Our study established a novel IFN-β associated genes signature to predict overall survival of GBM, which may help in clinical decision making for individual treatment.


2021 ◽  
Vol 7 ◽  
Author(s):  
Xiaoyu Deng ◽  
Qinghua Bi ◽  
Shihan Chen ◽  
Xianhua Chen ◽  
Shuhui Li ◽  
...  

Although great progresses have been made in the diagnosis and treatment of hepatocellular carcinoma (HCC), its prognostic marker remains controversial. In this current study, weighted correlation network analysis and Cox regression analysis showed significant prognostic value of five autophagy-related long non-coding RNAs (AR-lncRNAs) (including TMCC1-AS1, PLBD1-AS1, MKLN1-AS, LINC01063, and CYTOR) for HCC patients from data in The Cancer Genome Atlas. By using them, we constructed a five-AR-lncRNA prognostic signature, which accurately distinguished the high- and low-risk groups of HCC patients. All of the five AR lncRNAs were highly expressed in the high-risk group of HCC patients. This five-AR-lncRNA prognostic signature showed good area under the curve (AUC) value (AUC = 0.751) for the overall survival (OS) prediction in either all HCC patients or HCC patients stratified according to several clinical traits. A prognostic nomogram with this five-AR-lncRNA signature predicted the 3- and 5-year OS outcomes of HCC patients intuitively and accurately (concordance index = 0.745). By parallel comparison, this five-AR-lncRNA signature has better prognosis accuracy than the other three recently published signatures. Furthermore, we discovered the prediction ability of the signature on therapeutic outcomes of HCC patients, including chemotherapy and immunotherapeutic responses. Gene set enrichment analysis and gene mutation analysis revealed that dysregulated cell cycle pathway, purine metabolism, and TP53 mutation may play an important role in determining the OS outcomes of HCC patients in the high-risk group. Collectively, our study suggests a new five-AR-lncRNA prognostic signature for HCC patients.


Author(s):  
Dongyan Zhao ◽  
Xizhen Sun ◽  
Sidan Long ◽  
Shukun Yao

AbstractAimLong non-coding RNAs (lncRNAs) have been identified to regulate cancers by controlling the process of autophagy and by mediating the post-transcriptional and transcriptional regulation of autophagy-related genes. This study aimed to investigate the potential prognostic role of autophagy-associated lncRNAs in colorectal cancer (CRC) patients.MethodsLncRNA expression profiles and the corresponding clinical information of CRC patients were collected from The Cancer Genome Atlas (TCGA) database. Based on the TCGA dataset, autophagy-related lncRNAs were identified by Pearson correlation test. Univariate Cox regression analysis and the least absolute shrinkage and selection operator analysis (LASSO) Cox regression model were performed to construct the prognostic gene signature. Gene set enrichment analysis (GSEA) was used to further clarify the underlying molecular mechanisms.ResultsWe obtained 210 autophagy-related genes from the whole dataset and found 1187 lncRNAs that were correlated with the autophagy-related genes. Using Univariate and LASSO Cox regression analyses, eight lncRNAs were screened to establish an eight-lncRNA signature, based on which patients were divided into the low-risk and high-risk group. Patients’ overall survival was found to be significantly worse in the high-risk group compared to that in the low-risk group (log-rank p = 2.731E-06). ROC analysis showed that this signature had better prognostic accuracy than TNM stage, as indicated by the area under the curve. Furthermore, GSEA demonstrated that this signature was involved in many cancer-related pathways, including TGF-β, p53, mTOR and WNT signaling pathway.ConclusionsOur study constructed a novel signature from eight autophagy-related lncRNAs to predict the overall survival of CRC, which could assistant clinicians in making individualized treatment.


2020 ◽  
Author(s):  
YuPing Bai ◽  
Wenbo Qi ◽  
Le Liu ◽  
Jing Zhang ◽  
Lan Pang ◽  
...  

Abstract Background: Hepatocellular carcinoma is ranked fifth among the most common cancer worldwide. Hypoxia can induce tumor growth, but the relationship with HCC prognosis remains unclear. Our study aims to construct a hypoxia-related multigene model to predict the prognosis of HCC. Methods: RNA-seq expression data and related clinical information were download from TCGA database and ICGC database, respectively. Univariate/multivariate Cox regression analysis was used to construct prognostic models. KM curve analysis, and ROC curve were used to evaluate the prognostic models, which were further verified in the clinical traits and ICGC database. GSEA analyzed pathway enrichment in high-risk groups. Nomogram was constructed to predict the personalized treatment of patients. Finally, real-time fluorescence quantitative PCR(RT-qPCR) was used to detect the expressions of KDELR3 and SCARB1 in normal hepatocytes and 4 hepatocellular carcinoma cells. Results: Through a series of analyses, 7 prognostic markers related to HCC survival were constructed. HCC patients were divided into the high and low risk group, and the results of KM curve showed that there was a significant difference between the two groups. Stratified analysis,found that there were significant differences in risk values of different ages, genders, stages and grades, which could be used as independent predictors. In addition, we assessed the risk value in the clinical traits analysis and found that it could accelerate the progression of cancer, while the results of GSEA enrichment analysis showed that the high-risk group patients were mainly distributed in the cell cycle and other pathways. Then, Nomogram was constructed to predict the overall survival of patients. Finally, RT-qPCR showed that KDELR3 and SCARB1 were highly expressed in HepG2 and L02, respectively. Conclusion: This study provides a potential diagnostic indicator for HCC patients, and help clinicians to deepen the comprehension in HCC pathogenesis so as to make personalized medical decisions.


Sign in / Sign up

Export Citation Format

Share Document