scholarly journals Evolution of Mendelian Dominance in Gene Regulatory Networks Associated With Phenotypic Robustness

Author(s):  
Kenji Okubo ◽  
Kunihiko Kaneko

Abstract Background: Mendelian inheritance is a fundamental law of genetics. Considering two alleles in a diploid, a phenotype of a heterotype is dominated by a particular homotype according to the law of dominance. This picture is usually based on simple genotype-phenotype mapping in which one gene regulates one phenotype. However, in reality, some interactions between genes can result in deviation from Mendelian dominance. Result: Here, by using the numerical evolution of diploid gene regulatory networks (GRNs), we discuss whether Mendelian dominance evolves beyond the classical case of one-to-one genotype-phenotype mapping. We examine whether complex genotype-phenotype mapping can achieve Mendelian dominance through the evolution of the GRN with interacting genes. Specifically, we extend the GRN model to a diploid case, in which two GRN matrices are added to give gene expression dynamics, and simulate evolution with meiosis and recombination. Our results reveal that Mendelian dominance evolves even under complex genotype-phenotype mapping. This dominance is achieved via a group of genotypes that differ from each other but have a common phenotype given by the expression of target genes. Calculating the degree of dominance shows that it increases through the evolution, correlating closely with the decrease in phenotypic fluctuations and the increase in robustness to initial noise. This evolution of Mendelian dominance is associated with phenotypic robustness against meiosis-induced genome mixing, whereas sexual recombination arising from the mixing of chromosomes from the parents further enhances dominance and robustness. Owing to this dominance, the robustness to genetic differences increases, while the optimal fitness is sustained up to a large difference between the two genomes. Conclusion: Mendelian dominance is achieved by groups of genotypes that are associated with the increase in phenotypic robustness to noise.

2021 ◽  
Author(s):  
Kenji Okubo ◽  
Kunihiko Kaneko

AbstractMendelian inheritance is a fundamental law of genetics. Considering two alleles in a diploid, a phenotype of a heterotype is dominated by a particular homotype according to the law of dominance. This picture is usually based on simple genotype-phenotype mapping in which one gene regulates one phenotype. However, in reality, some interactions between genes can result in deviation from Mendelian dominance.Here, by using the numerical evolution of diploid gene regulatory networks (GRNs), we discuss whether Mendelian dominance evolves beyond the classical case of one-to-one genotype-phenotype mapping. We examine whether complex genotype-phenotype mapping can achieve Mendelian dominance through the evolution of the GRN with interacting genes. Specifically, we extend the GRN model to a diploid case, in which two GRN matrices are added to give gene expression dynamics, and simulate evolution with meiosis and recombination. Our results reveal that Mendelian dominance evolves even under complex genotype-phenotype mapping. This dominance is achieved via a group of genotypes that differ from each other but have a common phenotype given by the expression of target genes. Calculating the degree of dominance shows that it increases through the evolution, correlating closely with the decrease in phenotypic fluctuations and the increase in robustness to initial noise. This evolution of Mendelian dominance is associated with phenotypic robustness against meiosis-induced genome mixing, whereas sexual recombination arising from the mixing of chromosomes from the parents further enhances dominance and robustness. Owing to this dominance, the robustness to genetic differences increases, while the optimal fitness is sustained up to a large difference between the two genomes. In summary, Mendelian dominance is achieved by groups of genotypes that are associated with the increase in phenotypic robustness to noise.Author summaryMendelian dominance is one of the most fundamental laws in genetics. When two conflicting characters occur in a single diploid, the dominant character is always chosen. Assuming that one gene makes one character, this law is simple to grasp. However, in reality, phenotypes are generated via interactions between several genes, which may alter Mendel’s dominance law. The evolution of robustness to noise and mutations has been investigated extensively using complex expression dynamics with gene regulatory networks. Here, we applied gene-expression dynamics with complex interactions to the case of a diploid and simulated the evolution of the gene regulatory network to generate the optimal phenotype given by a certain gene expression pattern. Interestingly, after evolution, Mendelian dominance is achieved via a group of genes. This group-based Mendelian dominance is shaped by phenotype insensitivity to genome mixing by meiosis and evolves concurrently with the robustness to noise. By focusing on the influence of phenotypic robustness, which has received considerable attention recently, our result provides a novel perspective as to why Mendel’s law of dominance is commonly observed.


2016 ◽  
Vol 113 (13) ◽  
pp. E1835-E1843 ◽  
Author(s):  
Mina Fazlollahi ◽  
Ivor Muroff ◽  
Eunjee Lee ◽  
Helen C. Causton ◽  
Harmen J. Bussemaker

Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae. We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.


2019 ◽  
Author(s):  
Justin J. Cassidy ◽  
Sebastian Bernasek ◽  
Rachael Bakker ◽  
Ritika Giri ◽  
Nicolás Peláez ◽  
...  

ABSTRACTMetabolic conditions affect the developmental tempo of most animal species. Consequently, developmental gene regulatory networks (GRNs) must faithfully adjust their dynamics to a variable time scale. We find evidence that layered weak repression of genes provides the necessary coupling between GRN output and cellular metabolism. Using a mathematical model that replicates such a scenario, we find that lowering metabolism corrects developmental errors that otherwise occur when different layers of repression are lost. Through mutant analysis, we show that gene expression dynamics are unaffected by loss of repressors, but only when cellular metabolism is reduced. We further show that when metabolism is lowered, formation of a variety of sensory organs inDrosophilais normal despite loss of individual repressors of transcription, mRNA stability, and protein stability. We demonstrate the universality of this phenomenon by experimentally eliminating the entire microRNA family of repressors, and find that all microRNAs are rendered unnecessary when metabolism is reduced. Thus, layered weak repression provides robustness through error frequency suppression, and may provide an evolutionary route to a shorter reproductive cycle.


2021 ◽  
Author(s):  
Vincent Lau ◽  
Rachel Woo ◽  
Bruno Pereira ◽  
Asher Pasha ◽  
Eddi Esteban ◽  
...  

AbstractGene regulatory networks (GRNs) are complex networks that capture multi-level regulatory events between one or more regulatory macromolecules, such as transcription factors (TFs), and their target genes. Advancements in screening technologies such as enhanced yeast-one-hybrid screens have allowed for high throughput determination of GRNs. However, visualization of GRNs in Arabidopsis has been limited to ad hoc networks and are not interactive. Here, we describe the Arabidopsis GEne Network Tool (AGENT) that houses curated GRNs and provides tools to visualize and explore them. AGENT features include expression overlays, subnetwork motif scanning, and network analysis. We show how to use AGENT’s multiple built-in tools to identify key genes that are involved in flowering and seed development along with identifying temporal multi-TF control of a key transporter in nitrate signaling. AGENT can be accessed at https://bar.utoronto.ca/AGENT.


2021 ◽  
Vol 22 (15) ◽  
pp. 8187
Author(s):  
Chunshen Long ◽  
Hanshuang Li ◽  
Xinru Li ◽  
Wuritu Yang ◽  
Yongchun Zuo

Somatic cell nuclear transfer (SCNT) technology can reprogram terminally differentiated cell nuclei into a totipotent state. However, the underlying molecular barriers of SCNT embryo development remain incompletely elucidated. Here, we observed that transcription-related pathways were incompletely activated in nuclear transfer arrest (NTA) embryos compared to normal SCNT embryos and in vivo fertilized (WT) embryos, which hinders the development of SCNT embryos. We further revealed the transcription pathway associated gene regulatory networks (GRNs) and found the aberrant transcription pathways can lead to the massive dysregulation of genes in NTA embryos. The predicted target genes of transcription pathways contain a series of crucial factors in WT embryos, which play an important role in catabolic process, pluripotency regulation, epigenetic modification and signal transduction. In NTA embryos, however, these genes were varying degrees of inhibition and show a defect in synergy. Overall, our research found that the incomplete activation of transcription pathways is another potential molecular barrier for SCNT embryos besides the incomplete reprogramming of epigenetic modifications, broadening the understanding of molecular mechanism of SCNT embryonic development.


2021 ◽  
Vol 30 (04) ◽  
pp. 2150022
Author(s):  
Sergio Peignier ◽  
Pauline Schmitt ◽  
Federica Calevro

Inferring Gene Regulatory Networks from high-throughput gene expression data is a challenging problem, addressed by the systems biology community. Most approaches that aim at unraveling the gene regulation mechanisms in a data-driven way, analyze gene expression datasets to score potential regulatory links between transcription factors and target genes. So far, three major families of approaches have been proposed to score regulatory links. These methods rely respectively on correlation measures, mutual information metrics, and regression algorithms. In this paper we present a new family of data-driven inference methods. This new family, inspired by the regression-based paradigm, relies on the use of classification algorithms. This paper assesses and advocates for the use of this paradigm as a new promising approach to infer gene regulatory networks. Indeed, the development and assessment of five new inference methods based on well-known classification algorithms shows that the classification-based inference family exhibits good results when compared to well-established paradigms.


2017 ◽  
Vol 14 (2) ◽  
Author(s):  
Sepideh Sadegh ◽  
Maryam Nazarieh ◽  
Christian Spaniol ◽  
Volkhard Helms

AbstractGene-regulatory networks are an abstract way of capturing the regulatory connectivity between transcription factors, microRNAs, and target genes in biological cells. Here, we address the problem of identifying enriched co-regulatory three-node motifs that are found significantly more often in real network than in randomized networks. First, we compare two randomization strategies, that either only conserve the degree distribution of the nodes’ in- and out-links, or that also conserve the degree distributions of different regulatory edge types. Then, we address the issue how convergence of randomization can be measured. We show that after at most 10 × |E| edge swappings, converged motif counts are obtained and the memory of initial edge identities is lost.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Christopher A Jackson ◽  
Dayanne M Castro ◽  
Giuseppe-Antonio Saldi ◽  
Richard Bonneau ◽  
David Gresham

Understanding how gene expression programs are controlled requires identifying regulatory relationships between transcription factors and target genes. Gene regulatory networks are typically constructed from gene expression data acquired following genetic perturbation or environmental stimulus. Single-cell RNA sequencing (scRNAseq) captures the gene expression state of thousands of individual cells in a single experiment, offering advantages in combinatorial experimental design, large numbers of independent measurements, and accessing the interaction between the cell cycle and environmental responses that is hidden by population-level analysis of gene expression. To leverage these advantages, we developed a method for scRNAseq in budding yeast (Saccharomyces cerevisiae). We pooled diverse transcriptionally barcoded gene deletion mutants in 11 different environmental conditions and determined their expression state by sequencing 38,285 individual cells. We benchmarked a framework for learning gene regulatory networks from scRNAseq data that incorporates multitask learning and constructed a global gene regulatory network comprising 12,228 interactions.


2021 ◽  
Vol 18 (177) ◽  
Author(s):  
Brandon Alexander ◽  
Alexandra Pushkar ◽  
Michelle Girvan

We study a simplified model of gene regulatory network evolution in which links (regulatory interactions) are added via various selection rules that are based on the structural and dynamical features of the network nodes (genes). Similar to well-studied models of ‘explosive’ percolation, in our approach, links are selectively added so as to delay the transition to large-scale damage propagation, i.e. to make the network robust to small perturbations of gene states. We find that when selection depends only on structure, evolved networks are resistant to widespread damage propagation, even without knowledge of individual gene propensities for becoming ‘damaged’. We also observe that networks evolved to avoid damage propagation tend towards disassortativity (i.e. directed links preferentially connect high degree ‘source’ genes to low degree ‘target’ genes and vice versa). We compare our simulations to reconstructed gene regulatory networks for several different species, with genes and links added over evolutionary time, and we find a similar bias towards disassortativity in the reconstructed networks.


2016 ◽  
Vol 2 ◽  
pp. e85 ◽  
Author(s):  
Kam D. Dahlquist ◽  
John David N. Dionisio ◽  
Ben G. Fitzpatrick ◽  
Nicole A. Anguiano ◽  
Anindita Varshneya ◽  
...  

GRNsight is a web application and service for visualizing models of gene regulatory networks (GRNs). A gene regulatory network (GRN) consists of genes, transcription factors, and the regulatory connections between them which govern the level of expression of mRNA and protein from genes. The original motivation came from our efforts to perform parameter estimation and forward simulation of the dynamics of a differential equations model of a small GRN with 21 nodes and 31 edges. We wanted a quick and easy way to visualize the weight parameters from the model which represent the direction and magnitude of the influence of a transcription factor on its target gene, so we created GRNsight. GRNsight automatically lays out either an unweighted or weighted network graph based on an Excel spreadsheet containing an adjacency matrix where regulators are named in the columns and target genes in the rows, a Simple Interaction Format (SIF) text file, or a GraphML XML file. When a user uploads an input file specifying an unweighted network, GRNsight automatically lays out the graph using black lines and pointed arrowheads. For a weighted network, GRNsight uses pointed and blunt arrowheads, and colors the edges and adjusts their thicknesses based on the sign (positive for activation or negative for repression) and magnitude of the weight parameter. GRNsight is written in JavaScript, with diagrams facilitated by D3.js, a data visualization library. Node.js and the Express framework handle server-side functions. GRNsight’s diagrams are based on D3.js’s force graph layout algorithm, which was then extensively customized to support the specific needs of GRNs. Nodes are rectangular and support gene labels of up to 12 characters. The edges are arcs, which become straight lines when the nodes are close together. Self-regulatory edges are indicated by a loop. When a user mouses over an edge, the numerical value of the weight parameter is displayed. Visualizations can be modified by sliders that adjust the force graph layout parameters and through manual node dragging. GRNsight is best-suited for visualizing networks of fewer than 35 nodes and 70 edges, although it accepts networks of up to 75 nodes or 150 edges. GRNsight has general applicability for displaying any small, unweighted or weighted network with directed edges for systems biology or other application domains. GRNsight serves as an example of following and teaching best practices for scientific computing and complying with FAIR principles, using an open and test-driven development model with rigorous documentation of requirements and issues on GitHub. An exhaustive unit testing framework using Mocha and the Chai assertion library consists of around 160 automated unit tests that examine nearly 530 test files to ensure that the program is running as expected. The GRNsight application (http://dondi.github.io/GRNsight/) and code (https://github.com/dondi/GRNsight) are available under the open source BSD license.


Sign in / Sign up

Export Citation Format

Share Document