nitrate signaling
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 29)

H-INDEX

16
(FIVE YEARS 5)

Author(s):  
Casandra Hernández-Reyes ◽  
Elisabeth Lichtenberg ◽  
Jean Keller ◽  
Pierre-Marc Delaux ◽  
Thomas Ott ◽  
...  

Nitrogen (N) is an essential macronutrient and a key cellular messenger. Plants have evolved refined molecular systems to sense the cellular nitrogen status. This is exemplified by the root nodule symbiosis between legumes and symbiotic rhizobia, where nitrate availability inhibits this mutualistic interaction. Additionally, nitrate also functions as a metabolic messenger, resulting in nitrate signaling cascades which intensively cross-talk with other physiological pathways. (NODULE INCEPTION)-LIKE PROTEINS (NLPs) are key players in nitrate signaling and regulate nitrate-dependent transcription during legume-rhizobia interactions. Nevertheless, the coordinated interplay between nitrate signaling pathways and rhizobacteria-induced responses remains to be elucidated. In our study, we investigated rhizobia-induced changes in the root system architecture of the non-legume host Arabidopsis under different nitrate conditions. We demonstrate that rhizobium-induced lateral root growth and increased root hair length and density are regulated by a nitrate-related signaling pathway. Key players in this process are AtNLP4 and AtNLP5, since the corresponding mutants failed to respond to rhizobia. At the cellular level, AtNLP4 and AtNLP5 control a rhizobia-induced decrease in cell elongation rates, while additional cell divisions occurred independently of AtNLP4. In summary, our data suggest that root morphological responses to rhizobia are coordinated by a newly considered nitrate-related NLP-pathway that is evolutionary linked to regulatory circuits described in legumes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qi-Qi Hu ◽  
Jian-Qin Shu ◽  
Wen-Min Li ◽  
Guang-Zhi Wang

The plant root is an important storage organ that stores indole-3-acetic acid (IAA) from the apical meristem, as well as nitrogen, which is obtained from the external environment. IAA and nitrogen act as signaling molecules that promote root growth to obtain further resources. Fluctuations in the distribution of nitrogen in the soil environment induce plants to develop a set of strategies that effectively improve nitrogen use efficiency. Auxin integrates the information regarding the nitrate status inside and outside the plant body to reasonably distribute resources and sustainably construct the plant root system. In this review, we focus on the main factors involved in the process of nitrate- and auxin-mediated regulation of root structure to better understand how the root system integrates the internal and external information and how this information is utilized to modify the root system architecture.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ya-Jing Liu ◽  
Ning Gao ◽  
Qi-Jun Ma ◽  
Jiu-Cheng Zhang ◽  
Xun Wang ◽  
...  

AbstractNitrate is a major nitrogen resource for plant growth and development and acts as both a crucial nutrient and a signaling molecule for plants; hence, understanding nitrate signaling is important for crop production. Abscisic acid (ABA) has been demonstrated to be involved in nitrate signaling, but the underlying mechanism is largely unknown in apple. In this study, we found that exogenous ABA inhibited the transport of nitrate from roots to shoots in apple, and the transcription of the nitrate transporter MdNRT1.5/MdNPF7.3 was noticeably reduced at the transcriptional level by ABA, which inhibited the transport of nitrate from roots to shoots. Then, it was found that the ABA-responsive transcription factor MdABI5 bound directly to the ABRE recognition site of the MdNRT1.5 promoter and suppressed its expression. Overexpression of MdABI5 inhibited ABA-mediated transport of nitrate from roots to shoots. Overall, these results demonstrate that MdABI5 regulates the transport of nitrate from roots to shoots partially by mediating the expression of MdNRT1.5, illuminating the molecular mechanism by which ABA regulates nitrate transport in apple.


2021 ◽  
Author(s):  
Lucie Camut ◽  
Barbora Gallova ◽  
Lucas Jilli ◽  
Mathilde Sirlin-Josserand ◽  
Esther Carrera ◽  
...  

2021 ◽  
Vol 48 (3) ◽  
pp. 124-130
Author(s):  
Yu Jin Jung ◽  
Joung Soon Park ◽  
Ji Yun Go ◽  
Hyo Ju Lee ◽  
Jin Young Kim ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mengyuan Liu ◽  
Xiaona Zhi ◽  
Yi Wang ◽  
Yang Wang

Abstract Background Tomato (Solanum lycopersicum) is one of the most important horticultural crops, with a marked preference for nitrate as an inorganic nitrogen source. The molecular mechanisms of nitrate uptake and assimilation are poorly understood in tomato. NIN-like proteins (NLPs) are conserved, plant-specific transcription factors that play crucial roles in nitrate signaling. Results In this study, genome-wide analysis identified six NLP members in tomato genome. These members were clustered into three clades in a phylogenetic tree. Comparative genomic analysis showed that SlNLP genes exhibited collinear relationships to NLPs in Arabidopsis, canola, maize and rice, and that the expansion of the SlNLP family mainly resulted from segmental duplications in the tomato genome. Tissue-specific expression analysis showed that one of the close homologs of AtNLP6/7, SlNLP3, was strongly expressed in roots during both the seedling and flowering stages, that SlNLP4 and SlNLP6 exhibited preferential expression in stems and leaves and that SlNLP6 was expressed at high levels in fruits. Furthermore, the nitrate uptake in tomato roots and the expression patterns of SlNLP genes were measured under nitrogen deficiency and nitrate resupply conditions. Four SlNLPs, SlNLP1, SlNLP2, SlNLP4 and SlNLP6, were upregulated after nitrogen starvation. And SlNLP1 and SlNLP5 were induced rapidly and temporally by nitrate. Conclusions These results provide significant insights into the potential diverse functions of SlNLPs to regulate nitrate uptake.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kuan-Ting Hsin ◽  
Tzu-Jing Yang ◽  
Yu-Hsuan Lee ◽  
Yi-Sheng Cheng

Absorption of macronutrients such as nitrogen is a critical process for land plants. There is little information available on the correlation between the root evolution of land plants and the protein regulation of nitrogen absorption and responses. NIN-like protein (NLP) transcription factors contain a Phox and Bem1 (PB1) domain, which may regulate nitrate-response genes and seem to be involved in the adaptation to growing on land in terms of plant root development. In this report, we reveal the NLP phylogeny in land plants and the origin of NLP genes that may be involved in the nitrate-signaling pathway. Our NLP phylogeny showed that duplication of NLP genes occurred before divergence of chlorophyte and land plants. Duplicated NLP genes may lost in most chlorophyte lineages. The NLP genes of bryophytes were initially monophyletic, but this was followed by divergence of lycophyte NLP genes and then angiosperm NLP genes. Among those identified NLP genes, PB1, a protein–protein interaction domain was identified across our phylogeny. To understand how protein–protein interaction mediate via PB1 domain, we examined the PB1 domain of Arabidopsis thaliana NLP7 (AtNLP7) in terms of its molecular oligomerization and function as representative. Based on the structure of the PB1 domain, determined using small-angle x-ray scattering (SAXS) and site-directed mutagenesis, we found that the NLP7 PB1 protein forms oligomers and that several key residues (K867 and D909/D911/E913/D922 in the OPCA motif) play a pivotal role in the oligomerization of NLP7 proteins. The fact that these residues are all conserved across land plant lineages means that this oligomerization may have evolved after the common ancestor of extant land plants colonized the land. It would then have rapidly become established across land-plant lineages in order to mediate protein–protein interactions in the nitrate-signaling pathway.


Plant Science ◽  
2021 ◽  
Vol 306 ◽  
pp. 110862
Author(s):  
Zezhong Lin ◽  
Cuiting Guo ◽  
Shuaitong Lou ◽  
Songsong Jin ◽  
Weike Zeng ◽  
...  

2021 ◽  
Author(s):  
Vincent Lau ◽  
Rachel Woo ◽  
Bruno Pereira ◽  
Asher Pasha ◽  
Eddi Esteban ◽  
...  

AbstractGene regulatory networks (GRNs) are complex networks that capture multi-level regulatory events between one or more regulatory macromolecules, such as transcription factors (TFs), and their target genes. Advancements in screening technologies such as enhanced yeast-one-hybrid screens have allowed for high throughput determination of GRNs. However, visualization of GRNs in Arabidopsis has been limited to ad hoc networks and are not interactive. Here, we describe the Arabidopsis GEne Network Tool (AGENT) that houses curated GRNs and provides tools to visualize and explore them. AGENT features include expression overlays, subnetwork motif scanning, and network analysis. We show how to use AGENT’s multiple built-in tools to identify key genes that are involved in flowering and seed development along with identifying temporal multi-TF control of a key transporter in nitrate signaling. AGENT can be accessed at https://bar.utoronto.ca/AGENT.


Sign in / Sign up

Export Citation Format

Share Document