scholarly journals Value Addition to Forecasting: Towards Kharif Rice Crop Predictability Through Local Climate Variations Associated With Indo-Pacific Climate Drivers.

Author(s):  
Hemadri Bhusan Amat ◽  
Maheswar Pradhan ◽  
C. T. Tejavath ◽  
Avijit Dey ◽  
Suryachandra A. Rao ◽  
...  

Abstract The Indian Institute of Tropical Meteorology (IITM) has generated seasonal and extended range hindcast products for 1981-2008 and 2003-2016 respectively using the IITM-Climate Forecast System (IITM-CFS) coupled model at various resolutions and configurations. Notably, our observational analysis suggests that for the 1981-2008 period, the tropical Indo-Pacific drivers, namely, the canonical El Niño-Southern Oscillation (ENSO), ENSO Modoki, and Indian Ocean Dipole (IOD) are significantly associated with the observed Kharif rice production (KRP) of various rice-growing Indian states. In this paper, using the available hindcasts, we evaluate whether these state-of-the-art retrospective forecasts capture the relationship of the KRP of multiple states with the local rainfall as well as the tropical Indo-Pacific drivers, namely, the canonical ENSO, ENSO Modoki and the IOD. Using techniques of anomaly correlation, partial correlation, and pattern correlation, we surmise that the IITM-CFS successfully simulate the observed association of the tropical Indo-Pacific drivers with the local rainfall of many states during the summer monsoon. Significantly, the observed relationship of the local KRP with various climate drivers is predicted well for several Indian states such as United Andhra Pradesh, Karnataka, Odisha, and Bihar. The basis seems to be the model's ability to capture the teleconnections from the tropical Indo-Pacific drivers such as the IOD, canonical and Modoki ENSOs to the local climate, and consequently, the Kharif rice production.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Kyung-Sook Yun ◽  
June-Yi Lee ◽  
Axel Timmermann ◽  
Karl Stein ◽  
Malte F. Stuecker ◽  
...  

AbstractIntensification of El Niño-Southern Oscillation (ENSO)-rainfall variability in response to global warming is a robust feature across Coupled Model Intercomparison Project (CMIP) iterations, regardless of a lack of robust projected changes in ENSO-sea-surface temperature (SST) variability. Previous studies attributed this intensification to an increase in mean SST and moisture convergence over the central-to-eastern Pacific, without explicitly considering underlying nonlinear SST–rainfall relationship changes. Here, by analyzing changes of the tropical SST–rainfall relationship of CMIP6 models, we present a mechanism linking the mean SST rise to amplifying ENSO–rainfall variability. We show that the slope of the SST–rainfall function over Niño3 region becomes steeper in a warmer climate, ~42.1% increase in 2050–2099 relative to 1950–1999, due to the increase in Clausius–Clapeyron-driven moisture sensitivity, ~16.2%, and dynamic contributions, ~25.9%. A theoretical reconstruction of ENSO–rainfall variability further supports this mechanism. Our results imply ENSO’s hydrological impacts increase nonlinearly in response to global warming.


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
N. D. B. Ehelepola ◽  
Kusalika Ariyaratne ◽  
A. M. S. M. C. M. Aththanayake ◽  
Kamalanath Samarakoon ◽  
H. M. Arjuna Thilakarathna

Abstract Background Leptospirosis is a bacterial zoonosis. Leptospirosis incidence (LI) in Sri Lanka is high. Infected animals excrete leptospires into the environment via their urine. Survival of leptospires in the environment until they enter into a person and several other factors that influence leptospirosis transmission are dependent upon local weather. Past studies show that rainfall and other weather parameters are correlated with the LI in the Kandy district, Sri Lanka. El Niño Southern Oscillation (ENSO), ENSO Modoki, and the Indian Ocean Dipole (IOD) are teleconnections known to be modulating rainfall in Sri Lanka. There is a severe dearth of published studies on the correlations between indices of these teleconnections and LI. Methods We acquired the counts of leptospirosis cases notified and midyear estimated population data of the Kandy district from 2004 to 2019, respectively, from weekly epidemiology reports of the Ministry of Health and Department of Census and Statistics of Sri Lanka. We estimated weekly and monthly LI of Kandy. We obtained weekly and monthly teleconnection indices data for the same period from the National Oceanic and Atmospheric Administration (NOAA) of the USA and Japan Agency for Marine-Earth Science and Technology (JAMSTEC). We performed wavelet time series analysis to determine correlations with lag periods between teleconnection indices and LI time series. Then, we did time-lagged detrended cross-correlation analysis (DCCA) to verify wavelet analysis results and to find the magnitudes of the correlations detected. Results Wavelet analysis displayed indices of ENSO, IOD, and ENSO Modoki were correlated with the LI of Kandy with 1.9–11.5-month lags. Indices of ENSO showed two correlation patterns with Kandy LI. Time-lagged DCCA results show all indices of the three teleconnections studied were significantly correlated with the LI of Kandy with 2–5-month lag periods. Conclusions Results of the two analysis methods generally agree indicating that ENSO and IOD modulate LI in Kandy by modulating local rainfall and probably other weather parameters. We recommend further studies about the ENSO Modoki and LI correlation in Sri Lanka. Monitoring for extreme teleconnection events and enhancing preventive measures during lag periods can blunt LI peaks that may follow.


2018 ◽  
Vol 31 (14) ◽  
pp. 5707-5729 ◽  
Author(s):  
Weichen Tao ◽  
Gang Huang ◽  
Renguang Wu ◽  
Kaiming Hu ◽  
Pengfei Wang ◽  
...  

Abstract The present study documents the biases of summertime northwest Pacific (NWP) atmospheric circulation anomalies during the decaying phase of ENSO and investigates their plausible reasons in 32 models from phase 5 of the Coupled Model Intercomparison Project. Based on an intermodel empirical orthogonal function (EOF) analysis of El Niño–Southern Oscillation (ENSO)-related 850-hPa wind anomalies, the dominant modes of biases are extracted. The first EOF mode, explaining 21.3% of total intermodel variance, is characterized by a cyclone over the NWP, indicating a weaker NWP anticyclone. The cyclone appears to be a Rossby wave response to unrealistic equatorial western Pacific (WP) sea surface temperature (SST) anomalies related to excessive equatorial Pacific cold tongue in the models. On one hand, the cold SST biases increase the mean zonal SST gradient, which further intensifies warm zonal advection, favoring the development and persistence of equatorial WP SST anomalies. On the other hand, they reduce the anomalous convection caused by ENSO-related warming, and the resultant increase in downward shortwave radiation contributes to the SST anomalies there. The second EOF mode, explaining 18.6% of total intermodel variance, features an anticyclone over the NWP with location shifted northward. The related SST anomalies in the Indo-Pacific sector show a tripole structure, with warming in the tropical Indian Ocean and equatorial central and eastern Pacific and cooling in the NWP. The Indo-Pacific SST anomalies are highly controlled by ENSO amplitude, which is determined by the intensity of subtropical cells via the adjustment of meridional and vertical advection in the models.


2021 ◽  
pp. 1-38
Author(s):  
Tao Lian ◽  
Dake Chen

AbstractWhile both intrinsic low-frequency atmosphere–ocean interaction and multiplicative burst-like event affect the development of the El Niño–Southern Oscillation (ENSO), the strong nonlinearity in ENSO dynamics has prevented us from separating their relative contributions. Here we propose an online filtering scheme to estimate the role of the westerly wind bursts (WWBs), a type of aperiodic burst-like atmospheric perturbation over the western-central tropical Pacific, in the genesis of the centennial extreme 1997/98 El Niño using the CESM coupled model. This scheme highlights the deterministic part of ENSO dynamics during model integration, and clearly demonstrates that the strong and long-lasting WWB in March 1997 was essential for generating the 1997/98 El Niño. Without this WWB, the intrinsic low-frequency coupling would have only produced a weak warm event in late 1997 similar to the 2014/15 El Niño.


Karstenia ◽  
2021 ◽  
pp. 1-12
Author(s):  
Carlos Rojas ◽  
Pedro A. Rojas ◽  
Steven L. Stephenson

Long-term monitoring and phenological patterns of microbial communities are rare in the scientific literature. Myxomycetes have life cycle characteristics that allow both to be documented. The present study summarizes the integrated floristic and bioclimatic components of a 30-month assessment of myxomycete sporocarps in a premontane tropical forest in Turrialba, Costa Rica. Based on monthly visits and a standard sampling effort of 120 minutes per visit, myxomycetes were recorded on leaves, twigs, and logs on the ground by two to three people in 20-minute periods associated with six different collecting sites within a 34-hectare successional forest patch. Biological data were analyzed using three recorded climatic variables obtained <em>in situ</em> during the complete period of study. Also, the Oceanic Niño Index (ONI), provided by NOAA, an estimate of El Niño-Southern Oscillation (ENSO), was evaluated in the analyses. Overall, 54 species and 2245 records of myxomycetes were recorded, with an average of 14.5 species (range between 6-24) and 78.4 records (range between 20-110) detected each month. In general, neither the number of records nor the number of species were associated with individual climate variables, but multiple regression analyses showed that a combination of the accumulated precipitation of the four days before sampling and the average relative humidity can explain most of the fruiting dynamics (R2 = 0.56). When the ONI index was included in the analyses, the explained variability increased (R2 = 0.64), and when a categorization of months based on the same index was used, analyses showed that both the number of records and species evenness were affected by ENSO. At the species level, <em>Hemitrichia calyculata</em> was the only species observed during every month, closely followed by <em>Arcyria cinerea</em>, <em>A. denudata</em>, and <em>Physarum compressum</em>, recorded on most visits. Sporadic fruiting in some species such as <em>Tubifera microsperma</em>, <em>P. tenerum</em>, <em>P. bogoriense</em>, <em>P. melleum</em>, and <em>Metatrichia vesparia</em> could have been associated with local climate oscillations influenced by ENSO patterns. Phenological patterns were observed at the species level, indicating that in the Neotropics, under favorable conditions, myxomycete sporocarps are practically always present, but species assemblages vary temporally. These variations are primarily driven by local climate, but regional climate dynamics also affect fruiting patterns. Presumably, the remaining ecological effect on fruiting patterns in the Neotropics can be attributed to certain finer factors such as ecosystem structure, substrate quality/ availability, and biotic interactions. As such, phenomena such as climate change can have an important effect on the production of sporocarps by tropical myxomycetes, with subsequent effects of their ecological dynamics.


2019 ◽  
Vol 53 (3-4) ◽  
pp. 2479-2479 ◽  
Author(s):  
Chunxue Yang ◽  
Hannah M. Christensen ◽  
Susanna Corti ◽  
Jost von Hardenberg ◽  
Paolo Davini

Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 891 ◽  
Author(s):  
Teddy Craciunescu ◽  
Andrea Murari ◽  
Michela Gelfusa

A new measure for the characterization of interconnected dynamical systems coupling is proposed. The method is based on the representation of time series as weighted cross-visibility networks. The weights are introduced as the metric distance between connected nodes. The structure of the networks, depending on the coupling strength, is quantified via the entropy of the weighted adjacency matrix. The method has been tested on several coupled model systems with different individual properties. The results show that the proposed measure is able to distinguish the degree of coupling of the studied dynamical systems. The original use of the geodesic distance on Gaussian manifolds as a metric distance, which is able to take into account the noise inherently superimposed on the experimental data, provides significantly better results in the calculation of the entropy, improving the reliability of the coupling estimates. The application to the interaction between the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole and to the influence of ENSO on influenza pandemic occurrence illustrates the potential of the method for real-life problems.


Sign in / Sign up

Export Citation Format

Share Document