scholarly journals Phenology of myxomycetes in Turrialba, Costa Rica

Karstenia ◽  
2021 ◽  
pp. 1-12
Author(s):  
Carlos Rojas ◽  
Pedro A. Rojas ◽  
Steven L. Stephenson

Long-term monitoring and phenological patterns of microbial communities are rare in the scientific literature. Myxomycetes have life cycle characteristics that allow both to be documented. The present study summarizes the integrated floristic and bioclimatic components of a 30-month assessment of myxomycete sporocarps in a premontane tropical forest in Turrialba, Costa Rica. Based on monthly visits and a standard sampling effort of 120 minutes per visit, myxomycetes were recorded on leaves, twigs, and logs on the ground by two to three people in 20-minute periods associated with six different collecting sites within a 34-hectare successional forest patch. Biological data were analyzed using three recorded climatic variables obtained <em>in situ</em> during the complete period of study. Also, the Oceanic Niño Index (ONI), provided by NOAA, an estimate of El Niño-Southern Oscillation (ENSO), was evaluated in the analyses. Overall, 54 species and 2245 records of myxomycetes were recorded, with an average of 14.5 species (range between 6-24) and 78.4 records (range between 20-110) detected each month. In general, neither the number of records nor the number of species were associated with individual climate variables, but multiple regression analyses showed that a combination of the accumulated precipitation of the four days before sampling and the average relative humidity can explain most of the fruiting dynamics (R2 = 0.56). When the ONI index was included in the analyses, the explained variability increased (R2 = 0.64), and when a categorization of months based on the same index was used, analyses showed that both the number of records and species evenness were affected by ENSO. At the species level, <em>Hemitrichia calyculata</em> was the only species observed during every month, closely followed by <em>Arcyria cinerea</em>, <em>A. denudata</em>, and <em>Physarum compressum</em>, recorded on most visits. Sporadic fruiting in some species such as <em>Tubifera microsperma</em>, <em>P. tenerum</em>, <em>P. bogoriense</em>, <em>P. melleum</em>, and <em>Metatrichia vesparia</em> could have been associated with local climate oscillations influenced by ENSO patterns. Phenological patterns were observed at the species level, indicating that in the Neotropics, under favorable conditions, myxomycete sporocarps are practically always present, but species assemblages vary temporally. These variations are primarily driven by local climate, but regional climate dynamics also affect fruiting patterns. Presumably, the remaining ecological effect on fruiting patterns in the Neotropics can be attributed to certain finer factors such as ecosystem structure, substrate quality/ availability, and biotic interactions. As such, phenomena such as climate change can have an important effect on the production of sporocarps by tropical myxomycetes, with subsequent effects of their ecological dynamics.

Oryx ◽  
2011 ◽  
Vol 45 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Özgün Emre Can ◽  
İrfan Kandemi̇r ◽  
İnci̇ Togan

AbstractThe wildcat Felis silvestris is a protected species in Turkey but the lack of information on its status is an obstacle to conservation initiatives. To assess the status of the species we interviewed local forestry and wildlife personnel and conducted field surveys in selected sites in northern, eastern and western Turkey during 2000–2007. In January–May 2006 we surveyed for the wildcat using 16 passive infrared-trigged camera traps in Yaylacı k Research Forest, a 50-km2 forest patch in Yenice Forest in northern Turkey. A total sampling effort of 1,200 camera trap days over 40 km2 yielded photo-captures of eight individual wildcats over five sampling occasions. Using the software MARK to estimate population size the closed capture–recapture model M0, which assumes a constant capture probability among all occasions and individuals, best fitted the capture history data. The wildcat population size in Yaylacı k Research Forest was estimated to be 11 (confidence interval 9–23). Yenice Forest is probably one of the most important areas for the long-term conservation of the wildcat as it is the largest intact forest habitat in Turkey with little human presence, and without human settlements, and with a high diversity of prey species. However, it has been a major logging area and is not protected. The future of Yenice Forest and its wildcat population could be secured by granting this region a protection status and enforcing environmental legislation.


2019 ◽  
Author(s):  
Ricardo A. Buriti ◽  
Wayne Hocking ◽  
Paulo P. Batista ◽  
Igo Paulino ◽  
Ana R. Paulino ◽  
...  

Abstract. This paper is about a study of diurnal tides on meteor wind observed simultaneously by two meteor radars sited on equatorial region. The radar are located in Santa Cruz (10.3° N, 85.6° W), Costa Rica (hereafter CR) and in São João do Cariri (7.4° S, 36.5° W), Brazil (hereafter CA). The distance between them is 5800 km. Harmonic analysis was used to get information of amplitude and phase (hour of peak amplitude) of diurnal, semidiurnal and terdiurnal tides between 82 and 98 km of height. The period of observation was from April 2005 to January 2006. The results were compared to GSWM00 model. In general, seasonal agreement between observation and model was satisfactory to zonal and meridional amplitudes. Values of zonal and meridional amplitudes from November to January to CR were very different of GSWM00. Peak of zonal amplitude (~ 25 m/s) to CR was observed in September and December between 90 and 94 km. On the other hand, meridional phase was excellent to both sites and vertical wavelength of 25 km was observed practically every month to CR and CA. The zonal phase presented some difficult to get vertical wavelength according to criteria adopted to calculate it. Considering diurnal zonal amplitude, when we compare CR and CA, we could expect a poor agreement of amplitude between them. That is normal if we believe that this is because the geographical location of both sites are completely different in terms of local climate even if they are close to the equator and effect of heat latent release could lead to different response at high altitudes.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 ◽  
Author(s):  
Blanche Saint-Béat ◽  
Brian D. Fath ◽  
Cyril Aubry ◽  
Jonathan Colombet ◽  
Julie Dinasquet ◽  
...  

Baffin Bay, located at the Arctic Ocean’s ‘doorstep’, is a heterogeneous environment where a warm and salty eastern current flows northwards in the opposite direction of a cold and relatively fresh Arctic current flowing along the west coast of the bay. This circulation affects the physical and biogeochemical environment on both sides of the bay. The phytoplanktonic species composition is driven by its environment and, in turn, shapes carbon transfer through the planktonic food web. This study aims at determining the effects of such contrasting environments on ecosystem structure and functioning and the consequences for the carbon cycle. Ecological indices calculated from food web flow values provide ecosystem properties that are not accessible by direct in situ measurement. From new biological data gathered during the Green Edge project, we built a planktonic food web model for each side of Baffin Bay, considering several biological processes involved in the carbon cycle, notably in the gravitational, lipid, and microbial carbon pumps. Missing flow values were estimated by linear inverse modeling. Calculated ecological network analysis indices revealed significant differences in the functioning of each ecosystem. The eastern Baffin Bay food web presents a more specialized food web that constrains carbon through specific and efficient pathways, leading to segregation of the microbial loop from the classical grazing chain. In contrast, the western food web showed redundant and shorter pathways that caused a higher carbon export, especially via lipid and microbial pumps, and thus promoted carbon sequestration. Moreover, indirect effects resulting from bottom-up and top-down control impacted pairwise relations between species differently and led to the dominance of mutualism in the eastern food web. These differences in pairwise relations affect the dynamics and evolution of each food web and thus might lead to contrasting responses to ongoing climate change.


2015 ◽  
Vol 7 (2) ◽  
pp. 249-257
Author(s):  
J. Edgardo Arévalo ◽  
Yoryineth Méndez ◽  
Sergio Vargas

Although monitoring of animal populations for informed decision making is fundamental for the conservation and management of biodiversity, monitoring programs are not widely implemented. In addition, monitoring plans often represent an economic burden for many conservation organizations. Here we report on the monitoring of five focal species of mammals in the Tilarán mountain range, Costa Rica. We used a participatory approach in which trained rangers of four institutions conducted trail surveys in an area of ca 50,000ha to determine the presence/absence of the paca (Cuniculus paca), collared peccary (Pecari tajacu), tapir (Tapirus bairdii), jaguar (Panthera onca) and puma (Puma concolor) using track collections. Permanent transects of 3 km were sampled on the same day every month in 2000-01 (141 km) and 2009-10 (303 km). Four of the five focal species were registered in our sampling. One of the most valuable outcomes of the study was the initiative of the rangers to train community members to participate in the monitoring plan. We believe that this participatory approach not only has great potential for the integration of rangers in long term monitoring, but also the incorporation of citizen science-based programs. Multi-institutional collaboration for species monitoring could reduce costs and increase the sampling effort.


Author(s):  
Douglas G. Goodin ◽  
Maurice J. McHugh

The five chapters of part III provide a broad overview of decadal-scale climate processes and their ecological effect in a variety of ecosystems. Written by authors with disciplinary backgrounds that encompass climatology, biometeorology, and ecology, the chapters range from cross-site climate analysis with little direct attention to ecosystem effects (e.g., McHugh and Goodin, chapter 11; Hayden and Hayden, chapter 14) to more intensive studies of direct climate/ecological interaction at single sites or over more defined geographical areas (e.g., Greenland, chapter 13; Juday et al., chapter 12; Milne et al., chapter 15). Separately, each of these chapters contributes to understanding some aspect of the interaction of climate and ecology. As an integrated whole, they encapsulate many of the cross-disciplinary problems confronted by LTER scientists as they explore the interaction of climate and ecology. Despite the widely varying topics addressed and the disparate backgrounds of the contributors, similar themes emerge in each of the chapters. Here, we elucidate these themes and place them within the framework questions that have guided this volume. Climatologists have long recognized the existence of cyclical or quasi-cyclical modes or patterns in the global circulation system. Typically, these patterns are characterized by variation in the strength or position of semipermanent pressure centers within the global circulation system. These variations occur at timescales ranging from seasonal to decadal, and such variability is frequently invoked as a causal mechanism for climatic trends or fluctuation at these various timescales. A variety of indexes have been constructed to characterize these pressure patterns and the teleconnections that result from them (see van Loon and Rogers 1978, Rogers 1984, and Trenberth and Hurrell 1994 for in-depth discussion of the derivation and interrelationships of atmospheric circulation indices). Evidence of some of these patterns recurs throughout each of the chapters, suggesting their importance in decadal-scale climate/ecology interactions at LTER sites. Although the chapters in this section concentrate on interdecadal variability, climate variability is a multiscale phenomenon in both space and time. Several authors acknowledge this, notably Milne et al. (chapter 15), McHugh and Goodin (chapter 11), and Greenland (chapter 13). Each of these chapters notes the importance of nondecadal variations, particularly the El Niño–Southern Oscillation (ENSO) phenomenon.


Zootaxa ◽  
2020 ◽  
Vol 4841 (1) ◽  
pp. 1-126
Author(s):  
CARINA MARA DE SOUZA ◽  
THOMAS PAPE ◽  
PATRICIA JACQUELINE THYSSEN

A taxonomic conspectus is presented for the genus Oxysarcodexia Townsend, 1917, which is one of the most species-rich genera of New World flesh flies. It has its center of diversity in the Neotropical Region, with some species reaching into the Nearctic and a few species introduced to the Australasian and Oceanian Regions. Species within this genus are primarily dung-breeders, but some species have also been bred from vertebrate carcasses. Oxysarcodexia is defined and diagnosed, and a diagnosis, distributional data and known biological data are provided for each species together with figures of the habitus and male terminalia. Oxysarcodexia currently comprises 91 valid species, including six species newly described herein: O. alectoris sp. n. (French Guiana), O. angulosa sp. n. (Costa Rica), O. ariozanoi sp. n. (Brazil), O. graminifolia sp. n. (Colombia and Ecuador), O. maiae sp. n. (Ecuador), and O. rimata sp. n. (Ecuador). Two nominal species based on a male holotype, Oxysarcodexia bomplandi (Hall, 1937) and O subsericans (Walker, 1858), were left unidentified pending examination of their terminalia. Four nominal species, O. aureiceps (Macquart, 1855), O. dorisae Dodge, 1965, O. flavifrons (Macquart, 1846) and O. neivae Mattos, 1919, all described solely based on females, are considered of uncertain status pending a comprehensive study of females of this genus. Asioboettcheria Verves, 2001 is proposed as a junior synonym of Oxysarcodexia Townsend, 1917, syn. n., Oxysarcodexia cuernavaca Dodge, 1966 is proposed as a junior synonym of O. ventricosa (Wulp, 1895), syn. n., and Stackelbergeola papei Nandi, 1994 is proposed as a junior synonym of O. thornax (Walker, 1849), syn. n. A lectotype is designated for Sarcophaga varia Walker, 1836 [= O. varia (Walker, 1836)]. The newly-described O. ariozanoi and O. maiae are included in the “xon group” (former “Xarcophaga group”). New country-level distributional records are provided for O. adunca Lopes, 1975 (Ecuador), O. berlai Lopes, 1975 (Peru), O. cocais Carvalho-Filho, Sousa & Esposito, 2017 (Argentina), O. insolita Lopes, 1946 (Ecuador), O. jamesi Dodge, 1968 (Costa Rica), O. marina (Hall, 1938) (Brazil), O. nitida Soares & Mello-Patiu, 2010 (Ecuador), O. notata Soares & Mello-Patiu, 2010 (Brazil and Ecuador), and O. terminalis (Wiedemann, 1830) (Paraguay). 


2005 ◽  
Vol 12 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Y.-H. Jin ◽  
A. Kawamura ◽  
K. Jinno ◽  
R. Berndtsson

Abstract. Global climate variability affects important local hydro-meteorological variables like precipitation and temperature. The Southern Oscillation (SO) is an easily quantifiable major driving force that gives impact on regional and local climate. The relationships between SO and local climate variation are, however, characterized by strongly nonlinear processes. Due to this, teleconnections between global-scale hydro-meteorological variables and local climate are not well understood. In this paper, we suggest to study these processes in terms of nonlinear dynamics. Consequently, the nonlinear dynamic relationship between the Southern Oscillation Index (SOI), precipitation, and temperature in Fukuoka, Japan, is investigated using a nonlinear multivariable approach. This approach is based on the joint variation of these variables in the phase space. The joint phase-space variation of SOI, precipitation, and temperature is studied with the primary objective to obtain a better understanding of the dynamical evolution of local hydro-meteorological variables affected by global atmospheric-oceanic phenomena. The results from the analyses display rather clear low-order phase space trajectories when treating the time series individually. However, when plotting phase space trajectories for several time series jointly, complicated higher-order nonlinear relationships emerge between the variables. Consequently, simple data-driven prediction techniques utilizing phase-space characteristics of individual time series may prove successful. On the other hand, since either the time series are too short and/or the phase-space properties are too complex when analysing several variables jointly, it may be difficult to use multivariable statistical prediction techniques for the present investigated variables. In any case, it is essential to further pursue studies regarding links between the SOI and observed local climatic and other geophysical variables even if these links are not fully understood in physical terms.


Sign in / Sign up

Export Citation Format

Share Document