scholarly journals Climatology of Medium-Scale Traveling Ionospheric Disturbances (MSTIDs) Observed with GPS Networks in the North African Region

2020 ◽  
Author(s):  
Temitope Seun Oluwadare ◽  
Norbert Jakowski ◽  
Cesar E. Valladares ◽  
Andrew Oke-Ovie Akala ◽  
Oladipo E. Abe ◽  
...  

Abstract We present for the first time the climatology of medium-scale traveling ionospheric disturbances (MSTIDs) by using Global Positioning System (GPS) receiver networks on geomagnetically quiet days (Kp ≤ 3) over the North African region during 2008-2016. The ionospheric Total Electron Content (TEC) were estimated from the dual-frequency GPS measurements, and the TEC perturbations (dTEC) data were derived from the estimated TEC data. We focused on the TEC perturbations (dTEC) associated with medium-scale traveling ionospheric disturbances (MSTIDs) and statistically analyzed the MSTIDs characteristics, occurrence rate, diurnal and seasonal behavior as well as the interannual dependence. The oscillating wave-like pattern of MSTIDs showed a local and seasonal dependence of nighttime and daytime. The results showed that MSTIDs propagation direction is predominantly towards the South (equatorward), MSTIDs event period is (12 ≤ period ≤ 53 mins), and dominant amplitude (0.08 ≤ amp ≤ ~1.5 TECU), with a propagation velocity higher at daytime than nighttime. The amplitudes of the MSTIDs increase with solar activity. The study reveals that the spatio-temporal variation of MSTIDs depends on local time and solar activity. The study also shows that the disturbance occurrence time is dominant within the hours of (1200–1600 LT), and (1000–1400 LT) in December solstice at daytime for stations located in the Northwest (NW) and Northeast (NE) part of the African region, respectively. While at the nighttime, the MSTIDs exhibits variability in disturbance occurrence time around (NW: 2100–0200 LT) and (NE: 1900–0200 LT) in June solstice, but get extended to March equinox during solar maximum (2014). The mean phase velocity in daytime MSTIDs is higher than the nighttime in every season, except during June solstice. The study revealed that atmospheric gravity waves (AGWs) control the daytime MSTIDs occurrence for a selected day.

2020 ◽  
Author(s):  
Temitope Seun Oluwadare ◽  
Norbert Jakowski ◽  
Cesar E. Valladares ◽  
Andrew Oke-Ovie Akala ◽  
Oladipo E. Abe ◽  
...  

Abstract We present for the first time the climatology of medium-scale traveling ionospheric disturbances (MSTIDs) by using Global Positioning System (GPS) receiver networks on geomagnetically quiet days (Kp ≤ 3) over the North African region during 2008-2016. The ionospheric Total Electron Content (TEC) were estimated from the dual-frequency GPS measurements, and the TEC perturbations (dTEC) data were derived from the estimated TEC data. We focused on the TEC perturbations (dTEC) associated MSTIDs and statistically analyzed its characteristics, occurrence rate, diurnal and seasonal behavior as well as the interannual dependence. The results show that MSTID is a local and seasonal dependence. The results also show that MSTIDs predominantly propagates towards the South (equatorward). The daytime and nighttime MSTIDs increase with solar activity, and its event period is (12 ≤ period ≤ 53 mins), while the dominant amplitude is (0.08 ≤ amp ≤ ~1.5 dTECU). The MSTIDs propagation velocity is dominantly higher at the daytime than nighttime. The study also shows that the disturbance occurrence time is more frequent within the hours of (1200 - 1600 LT), and (1000 - 1400 LT) in December solstice at daytime for stations located in the Northwest (NW) and Northeast (NE) part of the African region, respectively. While at the nighttime, the MSTIDs also exhibits variability in disturbance occurrence time around (NW: 2100–0200 LT) and (NE: 1900–0200 LT) in June solstice, but get extended to March equinox during solar maximum (2014). The mean phase velocity in daytime MSTIDs is higher than the nighttime in every season, except during June solstice.


2021 ◽  
Author(s):  
Temitope Seun Oluwadare ◽  
Norbert Jakowski ◽  
Cesar E. Valladares ◽  
Andrew Oke-Ovie Akala ◽  
Oladipo E. Abe ◽  
...  

Abstract We present for the first time the climatology of medium-scale traveling ionospheric disturbances (MSTIDs) by using Global Positioning System (GPS) receiver networks on geomagnetically quiet days (Kp ≤ 3) over the North African region during 2008-2016. The ionospheric Total Electron Content (TEC) were estimated from the dual-frequency GPS measurements, and the TEC perturbations (dTEC) data were derived from the estimated TEC data. We focused on the TEC perturbations (dTEC) associated MSTIDs and statistically analyzed its characteristics, occurrence rate, diurnal and seasonal behavior as well as the interannual dependence. The results show that MSTID is a local and seasonal dependence. The results also show that MSTIDs predominantly propagates towards the South (equatorward). The daytime and nighttime MSTIDs increase with solar activity, and its event period is (12 ≤ period ≤ 53 mins), while the dominant amplitude is (0.08 ≤ amp ≤ ~1.5 dTECU). The MSTIDs propagation velocity is dominantly higher at the daytime than nighttime. The study also shows that the magnitude of MSTIDs is higher at the northwest (NW) when compared with northeast (NE), and the disturbance occurrence time is more frequent within the hours of (1200 - 1600 LT), and (1000 - 1400 LT) in December solstice at daytime for stations located in the NW and NE part of the African region, respectively. While at the nighttime, the MSTIDs also exhibits variability in disturbance occurrence time around (NW: 2100 - 0200 LT) and (NE: 1900 - 0200 LT) in June solstice, but get extended to March equinox during solar maximum (2014). The mean phase velocity in daytime MSTIDs is higher than the nighttime in every season, except during June solstice.


2020 ◽  
Author(s):  
Temitope Seun Oluwadare ◽  
Norbert Jakowski ◽  
Cesar E. Valladares ◽  
Andrew Oke-Ovie Akala ◽  
Oladipo E. Abe ◽  
...  

Abstract We present for the first time the climatology of medium-scale traveling ionospheric disturbances (MSTIDs) by using Global Positioning System (GPS) receiver networks on geomagnetically quiet days (Kp ≤ 3) over the North African region during 2008-2016. The MSTIDs appear frequently as oscillating waves or wave-like structures in electron density induced by the passage of Atmospheric Gravity Waves (AGW) propagating through the neutral atmosphere and consequently, causing fluctuation in the ionospheric Total Electron Content (TEC). The TEC perturbations (dTEC) data are derived from dual frequency GPS-measurements. We have statistically analyzed the MSTIDs characteristics, occurrence rate, seasonal behavior as well as the interannual dependence. The results show a local and seasonal dependence of nighttime and daytime MSTIDs. The propagation direction is predominantly towards the South (equatorward), MSTIDs event period is (12 ≤ period ≤ 53 mins), and dominant amplitude (0.08 ≤ amp ≤ ~1.5 TECU), with a propagation velocity higher at daytime than nighttime. The amplitudes of the MSTIDs increase with solar activity. The local MSTIDs Spatio-temporal heat reveals variability in disturbance occurrence time, but seems to be dominant within the hours of (Northwest: 1200–1600 LT) and (Northeast: 1000–1400 LT) in December solstice during daytime, and around (NW: 2100–0200 LT) and (NE: 1900–0200 LT) in June solstice, but get extended to March equinox during solar maximum (2014) during the nighttime. The time series of MSTIDs regional distribution map is also generated. Atmospheric gravity waves (AGW) seems to be responsible for the daytime MSTIDs occurrence.


2020 ◽  
Author(s):  
Temitope Seun Oluwadare ◽  
Norbert Jakowski ◽  
Cesar E. Valladares ◽  
Andrew Oke-Ovie Akala ◽  
Oladipo E. Abe ◽  
...  

Abstract We present for the first time the climatology of medium-scale traveling ionospheric disturbances (MSTIDs) by using Global Positioning System (GPS) receiver networks on geomagnetically quiet days (Kp ≤ 3) over the North African region during 2008-2016. The MSTIDs appear frequently as oscillating waves or wave-like structures in electron density induced by the passage of Atmospheric Gravity Waves (AGW) propagating through the neutral atmosphere and consequently, causing fluctuation in the ionospheric Total Electron Content (TEC). The TEC perturbations (dTEC) data are derived from dual frequency GPS-measurements. We have statistically analyzed the occurrence rate, diurnal and seasonal behavior as well as the annual MSTID occurrence characteristics. The results show a local and latitude dependence of nighttime and daytime MSTIDs. The propagation direction is predominantly towards the South (equatorward), MSTIDs event period is (10 ≤ period ≤ 43 mins), and amplitude (0.08 ≤ amp ≤ ~5.0 TECU), with a velocity higher at nighttime than daytime. The amplitudes for daytime and nighttime MSTIDs increase with solar activity. On the average, the local MSTIDs Spatio-temporal heat map for the Mid-latitude reveals variability in disturbance occurrence time to be dominant within the hours of 0900 - 1600 LT in December solstice (winter) and 1900–0400 LT in June solstice (summer) for daytime and nighttime respectively. While the low latitude reveals the disturbance occurrence time to be dominant within the hours of 1100 - 1800 LT in December solstice (winter) and 2000–0200 LT in equinox months and June solstice (summer) for daytime and nighttime respectively. The time series MSTIDs regional distribution map is also generated. Atmospheric gravity waves (AGW) might be responsible for the excitation mechanism for daytime MSTIDs.


2020 ◽  
Author(s):  
Temitope Seun Oluwadare ◽  
Norbert Jakowski ◽  
Cesar E. Valladares ◽  
Andrew Oke-Ovie Akala ◽  
Oladipo E. Abe ◽  
...  

Abstract We present for the first time the climatology of medium-scale traveling ionospheric disturbances (MSTIDs) by using Global Positioning System (GPS) receiver networks on geomagnetically quiet days (Kp ≤ 3) over the North African region during 2008-2016. The MSTIDs appear frequently as oscillating waves or wave-like structures in electron density induced by the passage of Atmospheric Gravity Waves (AGW) propagating through the neutral atmosphere and consequently, causing fluctuation in the ionospheric Total Electron Content (TEC). The TEC perturbations (dTEC) data are derived from dual frequency GPS-measurements. We have statistically analyzed the occurrence rate, diurnal and seasonal behavior as well as the annual MSTID occurrence characteristics. The results show a local and latitude dependence of nighttime and daytime MSTIDs. The propagation direction is predominantly towards the South (equatorward), MSTIDs event period is (10 ≤ period ≤ 43 mins), and amplitude (0.08 ≤ amp ≤ ~5.0 TECU), with a velocity higher at nighttime than daytime. The amplitudes for daytime and nighttime MSTIDs increase with solar activity. On the average, the local MSTIDs Spatio-temporal heat map for the Mid-latitude reveals variability in disturbance occurrence time to be dominant within the hours of 0900 - 1600 LT in December solstice (winter) and 1900–0400 LT in June solstice (summer) for daytime and nighttime respectively. While the low latitude reveals the disturbance occurrence time to be dominant within the hours of 1100 - 1800 LT in December solstice (winter) and 2000–0200 LT in equinox months and June solstice (summer) for daytime and nighttime respectively. The time series MSTIDs regional distribution map is also generated. Atmospheric gravity waves (AGW) might be responsible for the excitation mechanism for daytime MSTIDs.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Yuichi Otsuka ◽  
Atsuki Shinbori ◽  
Takuya Tsugawa ◽  
Michi Nishioka

AbstractIn order to reveal solar activity dependence of the medium-scale traveling ionospheric disturbances (MSTIDs) at midlatitudes, total electron content (TEC) data obtained from a Global Positioning System (GPS) receiver network in Japan during 22 years from 1998 to 2019 were analyzed. We have calculated the detrended TEC by subtracting the 1-h running average from the original TEC data for each satellite and receiver pair, and made two-dimensional TEC maps of the detrended TEC with a spatial resolution of 0.15° × 0.15° in longitude and latitude. We have investigated MSTID activity, defined as $$\delta I/\overline{I}$$ δ I / I ¯ , where $$\delta I$$ δ I and $$\overline{I}$$ I ¯ are standard deviation of the detrended TEC and the average vertical TEC within the area of 133.0°–137.0° E and 33.0°–37.0° N for 1 h, respectively. From each 2-h time series of the detrended TEC data within the same area as the MSTID activity, auto-correlation functions (ACFs) of the detrended TEC were calculated to estimate the horizontal propagation velocity and direction of the MSTIDs. Statistical results of the MSTID activity and propagation direction of MSTIDs were consistent with previous studies and support the idea that daytime MSTIDs could be caused by atmospheric gravity waves, and that nighttime MSTIDs were caused by electro-dynamical forces, such as the Perkins instability. From the current long-term observations, we have found that the nighttime MSTID activity and occurrence rate increased with decreasing solar activity. For the daytime MSTID, the occurrence rate increased with decreasing solar activity, whereas the MSTID activity did not show distinct solar activity dependence. These results suggest that the secondary gravity waves generated by dissipation of the primary gravity waves propagating from below increase under low solar activity conditions. The mean horizontal phase velocity of the MSTIDs during nighttime did not show a distinct solar activity dependence, whereas that during daytime showed an anticorrelation with solar activity. The horizontal phase velocity of the daytime MSTIDs was widely distributed from 40 to 180 m/s under high solar activity conditions, whereas it ranged between 80 and 200 m/s, with a maximum occurrence at 130 m/s under low solar activity conditions, suggesting that gravity waves with low phase velocity could be dissipated by high viscosity in the thermosphere under low solar activity conditions.


2013 ◽  
Vol 31 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Y. Otsuka ◽  
K. Suzuki ◽  
S. Nakagawa ◽  
M. Nishioka ◽  
K. Shiokawa ◽  
...  

Abstract. Two-dimensional structures of medium-scale traveling ionospheric disturbances (MSTIDs) over Europe have been revealed, for the first time, by using maps of the total electron content (TEC) obtained from more than 800 GPS receivers of the European GPS receiver networks. From statistical analysis of the TEC maps obtained 2008, we have found that the observed MSTIDs can be categorized into two groups: daytime MSTID and nighttime MSTID. The daytime MSTID frequently occurs in winter. Its maximum occurrence rate in monthly and hourly bin exceeds 70% at lower latitudes over Europe, whereas it is approximately 45% at higher latitudes. Since most of the daytime MSTIDs propagate southward, we speculate that they could be caused by atmospheric gravity waves in the thermosphere. The nighttime MSTIDs also frequently occur in winter but most of them propagate southwestward, in a direction consistent with the theory that polarization electric fields play an important role in generating the nighttime MSTIDs. The nighttime MSTID occurrence rate shows distinct latitudinal difference: The maximum of the occurrence rate in monthly and hourly bin is approximately 50% at lower latitudes in Europe, whereas the nighttime MSTID was rarely observed at higher latitudes. We have performed model calculations of the plasma density perturbations caused by a gravity wave and an oscillating electric field to reproduce the daytime and nighttime MSTIDs, respectively. We find that TEC perturbations caused by gravity waves do not show dip angle dependencies, while those caused by the oscillating electric field have a larger amplitude at lower latitudes. These dip angle dependencies of the TEC perturbation amplitude could contribute to the latitudinal variation of the MSTID occurrence rate. Comparing with previous studies, we discuss the longitudinal difference of the nighttime MSTID occurrence rate, along with the E- and F-region coupling processes. The seasonal variation, of the nighttime MSTID occurrence rate in Europe, is not consistent with the theory that the longitudinal and seasonal variations of the nighttime MSTID occurrence could be attributed to those of the Es layer occurrence.


2006 ◽  
Vol 24 (9) ◽  
pp. 2333-2345 ◽  
Author(s):  
N. F. Blagoveshchenskaya ◽  
T. D. Borisova ◽  
V. A. Kornienko ◽  
I. V. Moskvin ◽  
M. T. Rietveld ◽  
...  

Abstract. Experimental results from the Tromsø and Sura heating experiments at high and mid-latitudes are examined. It is shown that the combination of HF-induced target and bi-static HF Doppler radio scatter observations is a profitable method for probing medium-scale traveling ionospheric disturbances (TIDs) at high and mid-latitudes. HF ionospheric modification experiments provide a way of producing the HF-induced scatter target in a controlled manner at altitudes where the sensitivity to TIDs is highest. Bi-static HF Doppler radio scatter observations were carried out on the London-Tromsø-St. Petersburg path in the course of a Tromsø heating experiment on 16 November 2004 when the pump wave was reflected from an auroral Es-layer. During Sura heating experiments on 19 and 20 August 2004, when the HF pump wave was reflected from the F2 ionospheric layer, multi-position bi-static HF Doppler radio scatter observations were simultaneously performed at three reception points including St. Petersburg, Kharkov, and Rostov-on-Don. Ray tracing and Doppler shift simulations were made for all experiments. A computational technique has been developed allowing the reconstruction of the TID phase velocities from multi-position bi-static HF Doppler scatters. Parameters of medium-scale TIDs were found. In all experiments they were observed in the evening and pre-midnight hours. TIDs in the auroral E-region with periods of about 23 min were traveling southward at speeds of 210 m/s. TIDs in the mid-latitudinal F-region with periods from 20 to 45 min travelled at speeds between 40 and 150 m/s. During quiet magnetic conditions the waves were traveling in the north-east direction. In disturbed conditions the waves were moving in the south-west direction with higher speeds as compared with quiet conditions. Possible sources for the atmospheric gravity waves at middle and high latitudes are discussed.


2013 ◽  
Vol 31 (12) ◽  
pp. 2229-2237 ◽  
Author(s):  
T. M. Duly ◽  
N. P. Chapagain ◽  
J. J. Makela

Abstract. We present occurrence rate statistics for nighttime medium-scale traveling ionospheric disturbances (MSTIDs) in the Central Pacific and South American sectors using data collected by 630.0 nm filtered CCD imaging systems. The data were collected from September 2006 through December 2012. In general, the statistics are in good agreement with the basic linear theory of MSTIDs, with observations coinciding with low F10.7A values, representative of solar minimum. Overall, MSTIDs are observed in approximately 68% of the usable nights near the solstices at mid-latitudes and approximately 20% of the usable nights for equinox periods. Observations closer to the geomagnetic equator yielded a maximum occurrence rate of about 10–20% during the solstices and about 0–3% during the equinoxes. The lower number of MSTID observations near the low latitudes is attributed to limitations of MSTID growth rate, propagation, and/or geometrical observational effects. The relatively large number of MSTID occurrences during the solstices can be accounted for by the neutral wind contribution to the MSTID growth rate either at the local or magnetic conjugate point.


Sign in / Sign up

Export Citation Format

Share Document