scholarly journals IFA-EO: An Improved Firefly Algorithm Hybridized With Extremal Optimization for Continuous Unconstrained Optimization Problems

Author(s):  
Min-Rong Chen ◽  
Liu-Qing Yang ◽  
Guo-Qiang Zeng ◽  
Kang-Di Lu ◽  
Yi-Yuan Huang

Abstract As one of the evolutionary algorithms, firefly algorithm (FA) has been widely used to solve various complex optimization problems. However, FA has significant drawbacks in slow convergence rate and is easily trapped into local optimum. To tackle these defects, this paper proposes an improved FA combined with extremal optimization (EO), named IFA-EO, where three strategies are incorporated. First, to balance the tradeoff between exploration ability and exploitation ability, we adopt a new attraction model for FA operation, which combines the full attraction model and the single attraction model through the probability choice strategy. In the single attraction model, small probability accepts the worse solution to improve the diversity of the offspring. Second, the adaptive step size is proposed based on the number of iterations to dynamically adjust the attention to the exploration model or exploitation model. Third, we combine an EO algorithm with powerful ability in local-search into FA. Experiments are tested on two group popular benchmarks including complex unimodal and multimodal functions. Our experimental results demonstrate that the proposed IFA-EO algorithm can deal with various complex optimization problems and has similar or better performance than the other eight FA variants, three EO-based algorithms, and one advanced differential evolution variant in terms of accuracy and statistical results.

2020 ◽  
Vol 6 (8) ◽  
pp. 1411-1427 ◽  
Author(s):  
Yan-Cang Li ◽  
Pei-Dong Xu

In order to find a more effective method in structural optimization, an improved wolf pack optimization algorithm was proposed. In the traditional wolf pack algorithm, the problem of falling into local optimum and low precision often occurs. Therefore, the adaptive step size search and Levy's flight strategy theory were employed to overcome the premature flaw of the basic wolf pack algorithm. Firstly, the reasonable change of the adaptive step size improved the fineness of the search and effectively accelerated the convergence speed. Secondly, the search strategy of Levy's flight was adopted to expand the search scope and improved the global search ability of the algorithm. At last, to verify the performance of improved wolf pack algorithm, it was tested through simulation experiments and actual cases, and compared with other algorithms. Experiments show that the improved wolf pack algorithm has better global optimization ability. This study provides a more effective solution to structural optimization problems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0255951
Author(s):  
Yu Li ◽  
Yiran Zhao ◽  
Yue Shang ◽  
Jingsen Liu

The firefly algorithm (FA) is proposed as a heuristic algorithm, inspired by natural phenomena. The FA has attracted a lot of attention due to its effectiveness in dealing with various global optimization problems. However, it could easily fall into a local optimal value or suffer from low accuracy when solving high-dimensional optimization problems. To improve the performance of the FA, this paper adds the self-adaptive logarithmic inertia weight to the updating formula of the FA, and proposes the introduction of a minimum attractiveness of a firefly, which greatly improves the convergence speed and balances the global exploration and local exploitation capabilities of FA. Additionally, a step-size decreasing factor is introduced to dynamically adjust the random step-size term. When the dimension of a search is high, the random step-size becomes very small. This strategy enables the FA to explore solution more accurately. This improved FA (LWFA) was evaluated with ten benchmark test functions under different dimensions (D = 10, 30, and 100) and with standard IEEE CEC 2010 benchmark functions. Simulation results show that the performance of improved FA is superior comparing to the standard FA and other algorithms, i.e., particle swarm optimization, the cuckoo search algorithm, the flower pollination algorithm, the sine cosine algorithm, and other modified FA. The LWFA also has high performance and optimal efficiency for a number of optimization problems.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 250 ◽  
Author(s):  
Umesh Balande ◽  
Deepti Shrimankar

Firefly-Algorithm (FA) is an eminent nature-inspired swarm-based technique for solving numerous real world global optimization problems. This paper presents an overview of the constraint handling techniques. It also includes a hybrid algorithm, namely the Stochastic Ranking with Improved Firefly Algorithm (SRIFA) for solving constrained real-world engineering optimization problems. The stochastic ranking approach is broadly used to maintain balance between penalty and fitness functions. FA is extensively used due to its faster convergence than other metaheuristic algorithms. The basic FA is modified by incorporating opposite-based learning and random-scale factor to improve the diversity and performance. Furthermore, SRIFA uses feasibility based rules to maintain balance between penalty and objective functions. SRIFA is experimented to optimize 24 CEC 2006 standard functions and five well-known engineering constrained-optimization design problems from the literature to evaluate and analyze the effectiveness of SRIFA. It can be seen that the overall computational results of SRIFA are better than those of the basic FA. Statistical outcomes of the SRIFA are significantly superior compared to the other evolutionary algorithms and engineering design problems in its performance, quality and efficiency.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yue Wu ◽  
Qingpeng Li ◽  
Qingjie Hu ◽  
Andrew Borgart

Firefly Algorithm (FA, for short) is inspired by the social behavior of fireflies and their phenomenon of bioluminescent communication. Based on the fundamentals of FA, two improved strategies are proposed to conduct size and topology optimization for trusses with discrete design variables. Firstly, development of structural topology optimization method and the basic principle of standard FA are introduced in detail. Then, in order to apply the algorithm to optimization problems with discrete variables, the initial positions of fireflies and the position updating formula are discretized. By embedding the random-weight and enhancing the attractiveness, the performance of this algorithm is improved, and thus an Improved Firefly Algorithm (IFA, for short) is proposed. Furthermore, using size variables which are capable of including topology variables and size and topology optimization for trusses with discrete variables is formulated based on the Ground Structure Approach. The essential techniques of variable elastic modulus technology and geometric construction analysis are applied in the structural analysis process. Subsequently, an optimization method for the size and topological design of trusses based on the IFA is introduced. Finally, two numerical examples are shown to verify the feasibility and efficiency of the proposed method by comparing with different deterministic methods.


2018 ◽  
Vol 12 (11) ◽  
pp. 366 ◽  
Author(s):  
Issam AlHadid ◽  
Khalid Kaabneh ◽  
Hassan Tarawneh

Simulated Annealing (SA) is a common meta-heuristic algorithm that has been widely used to solve complex optimization problems. This work proposes a hybrid SA with EMC to divert the search effectively to another promising region. Moreover, a Tabu list memory applied to avoid cycling. Experimental results showed that the solution quality has enhanced using SA-EMCQ by escaping the search space from local optimum to another promising region space. In addition, the results showed that our proposed technique has outperformed the standard SA and gave comparable results to other approaches in the literature when tested on ITC2007-Track3 university course timetabling datasets.


Sign in / Sign up

Export Citation Format

Share Document