scholarly journals Design, Implementation, Comparison, and Performance analysis between Analog Butterworth and Chebyshev-I Low Pass Filter Using Approximation, Python and Proteus

Author(s):  
Navid Fazle Rabbi

Abstract Filters are broadly used in signal processing and communication systems in noise reduction. Butterworth, Chebyshev-I Analog Low Pass Filters are developed and implemented in this paper. The filters are manually calculated using approximations and verified using Python Programming Language. Filters are also simulated in Proteus 8 Professional and implemented in the Hardware Lab using the necessary components. This paper also denotes the comparison and performance analysis of filters using Manual Computations, Hardware, and Software.

2020 ◽  
Vol 8 (5) ◽  
pp. 1225-1229

This paper presents the design of a class of highly selective micro strip low pass filters. The proposed structure is considered for Stepped Impedance Low Pass Butterworth filter of order n=3 and n=5 with cut-off frequency 1.2 GHz and passband ripple of 3.01db [1]. The substrate FR4 having a dielectric constant 4.4 is considered for calculating the physical length of the micro strip low pass filter. The designing equation are solved using MATLAB Software and the results are analysed and compared using IE3D Simulator. The microwave filter is a building block that provides frequency selectivity in various microwave application like mobile, radar, satellite communication systems. The simulated results show the insertion loss and return loss of about -6.65 dB & - 55.49dB for N=3 and -7.23dB &-16.01 dB for N=5.Simulation has also been done for VSWR.


2005 ◽  
Vol 20 (1) ◽  
pp. 64-73 ◽  
Author(s):  
Aleksandar Zigic

Two presented methods were developed to improve classical preset time count rate meters by using adapt able signal processing tools. An optimized detection algorithm that senses the change of mean count rate was implemented in both methods. Three low-pass filters of various structures with adaptable parameters to implement the control of the mean count rate error by suppressing the fluctuations in a controllable way, were considered and one of them implemented in both methods. An adaptation algorithm for preset time interval calculation executed after the low-pass filter was devised and implemented in the first method. This adaptation algorithm makes it possible to obtain shorter preset time intervals for higher stationary mean count rate. The adaptation algorithm for preset time interval calculation executed before the low-pass filter was devised and implemented in the second method. That adaptation algorithm enables sensing of a rapid change of the mean count rate before fluctuations suppression is carried out. Some parameters were fixed to their optimum values after appropriate optimization procedure. Low-pass filters have variable number of stationary coefficients depending on the specified error and the mean count rate. They implement control of the mean count rate error by suppressing fluctuations in a controllable way. The simulated and realized methods, using the developed algorithms, guarantee that the response time shall not exceed 2 s for the mean count rate higher than 2 s-1 and that controllable mean count rate error shall be within the range of ?4% to ?10%.


2012 ◽  
Vol 1 (4) ◽  
pp. 356
Author(s):  
Pavan Sharma ◽  
Veerendra Jadaun ◽  
Devesh Mahor ◽  
Atal Verma

The filter is required in all RF-communication techniques. Low Pass Filters play an important role in wireless power transmission systems. Transmitted and received signals have to be filtered at a certain frequency with a specific bandwidth. In this paper the design of filter is done in the ISM (Industrial, Scientific and Medical) band whose frequency lies between 1.55GHz- 3.99GHz. After getting the specifications required, we realized the filter structure with the help of CST-MW software.


2016 ◽  
Vol 59 (3) ◽  
pp. 528-541 ◽  
Author(s):  
Qaiser Jahan

AbstractIn this article, we give necessary and sufficient conditions on a function to be a low-pass filter on a local field K of positive characteristic associated with the scaling function for multiresolution analysis of L2(K). We use probability and martingale methods to provide such a characterization.


Author(s):  
Hamid Radmanesh

In this paper, the application of microstrip technology is investigated in low-pass filters. A cascade microstrip low-pass filter with a sharp frequency response and a good cut-off bandwidth is presented using a modified radial resonator. The advantages of this proposed filter include minor losses in the transit band as well as the desired return. This filter design shows consistency when compared with the results of simulation and model performance. A comparison between the parameter values of this filter and previous structures indicates that it is desirable. The proposed filter can be used in modern communication systems such as aircraft distance measurement equipment (DME) antenna.


Author(s):  
A. G. Zinovev ◽  
I. A. Shestakov

A method for measuring the self-capacitance, inductance, loss resistance, and Q-factor of inductors as part of an LC low-pass filter at its operating frequency is presented. An example of the practical application of this method for measuring the equivalent pa-rameters of inductors and capacitors as part of a fifth-order Cauer low-pass filter using network analyzer.


2018 ◽  
Vol 27 (03n04) ◽  
pp. 1840021 ◽  
Author(s):  
Shahed Enamul Quadir ◽  
John A. Chandy

Physical Unclonable Functions (PUFs) are probabilistic circuit primitives that extract randomness from the physical characteristics of a device. PUFs are easy and simple to implement and its random nature makes its behavior hard to predict and model. Most existing PUF designs are based on variation at the chip level and can not be implemented in a printed circuit board (PCB). Therefore, these PUFs can not be used to protect against counterfeit PCBs in a distributed supply chain. In this work, we propose a novel PUF design based on resistor and capacitor variations for low pass filters (LoPUF). We demonstrate the setup in a protoboard for different resistor-capacitor pairs (RC pairs) for reliable low pass filter PUF. Because of process variations, the voltage will be different at the same cut-off frequency for our proposed PUF. Finally, the output of the filter is connected to an inverter to measure the pulse width and best suitable pulses are used for ID generation based on our algorithm.


2006 ◽  
Vol 16 (04) ◽  
pp. 1089-1096 ◽  
Author(s):  
YAN-LI ZOU ◽  
JIE ZHU ◽  
GUANRONG CHEN

In this paper, stabilization of fixed points of n-scroll Chua's circuit is investigated. Two adaptive control methods are proposed. One is based on an unstable low pass filter; the other is based on a stable and an unstable low pass filter. The simulation results verify the effectiveness of the two proposed control methods and performance comparisons show that the second control method is superior to the first one with regard to control speed and attraction basins.


Author(s):  
A. G. Zinovyev ◽  
I. A. Shestakov

Harmonic filters of short-wave transmitters, tunable in the frequency range using discrete variable capacitors, are presented. A comparison of a harmonic filter based on tunable LC low-pass filters with inductive coupling between the filter inductors is carried out with a similar harmonic filter, each LC low-pass filter of which con-tains an additional capacitive coupling capacitor connected between the two filter links and significantly changed the parameters of the harmonic filter.


Sign in / Sign up

Export Citation Format

Share Document