scholarly journals BCI training effects on chronic stroke correlate with functional reorganization in motor-related regions: A concurrent EEG and fMRI study

2020 ◽  
Author(s):  
Kai Yu Tong ◽  
Kai Yuan ◽  
Cheng Chen ◽  
Xin Wang ◽  
Winnie Chiu-wing Chu

Abstract Background: Brain-computer interface (BCI) guided robot-assisted training strategy has been increasingly applied to stroke rehabilitation, while few studies have investigated the neuroplasticity change and functional reorganization after intervention from multi-modality neuroimaging perspective. The present study aims to investigate the hemodynamic and electrophysical changes induced by BCI training using functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) respectively, as well as the relationship between the neurological changes and motor function improvement. Method: 14 chronic stroke subjects received 20 sessions of BCI-guided robot hand training. Simultaneous EEG and fMRI data were acquired before and immediately after the intervention. Seed-based functional connectivity for resting state fMRI data and effective connectivity analysis for EEG were processed to reveal the neuroplasticity changes and interaction between different brain regions. Moreover, the relationship among motor function improvement, hemodynamic changes and electrophysical changes derived from the two neuroimaging modalities were also investigated. Results: This work suggested: (a) significant motor function improvement could be obtained after BCI training therapy; (b) training effect significantly correlated with functional connectivity change between ipsilesional M1 (iM1) and contralesional Brodmann area 6 (including premotor area (cPMA) and supplementary motor area (SMA)) derived from fMRI; (c) training effect significantly correlated with information flow change from cPMA to iM1 and strongly correlated with information flow change from SMA to iM1 derived from EEG; (d) consistency of fMRI and EEG results illustrated by the correlation between functional connectivity change and information flow change. Conclusions: Our study showed changes in the brain after the BCI training therapy from chronic stroke survivors and provided a better understanding of neural mechanisms, especially the interaction among motor-related brain regions during stroke recovery. Besides, our finding demonstrated the feasibility and consistency of combining multiple neuroimaging modalities to investigate the neuroplasticity change. This study was registered at https://clinicaltrials.gov (NCT02323061) on 23 December 2014.

2021 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Kai Yuan ◽  
Cheng Chen ◽  
Xin Wang ◽  
Winnie Chiu-wing Chu ◽  
Raymond Kai-yu Tong

Brain–computer interface (BCI)-guided robot-assisted training strategy has been increasingly applied to stroke rehabilitation, while few studies have investigated the neuroplasticity change and functional reorganization after intervention from multimodality neuroimaging perspective. The present study aims to investigate the hemodynamic and electrophysical changes induced by BCI training using functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) respectively, as well as the relationship between the neurological changes and motor function improvement. Fourteen chronic stroke subjects received 20 sessions of BCI-guided robot hand training. Simultaneous EEG and fMRI data were acquired before and immediately after the intervention. Seed-based functional connectivity for resting-state fMRI data and effective connectivity analysis for EEG were processed to reveal the neuroplasticity changes and interaction between different brain regions. Moreover, the relationship among motor function improvement, hemodynamic changes, and electrophysical changes derived from the two neuroimaging modalities was also investigated. This work suggested that (a) significant motor function improvement could be obtained after BCI training therapy, (b) training effect significantly correlated with functional connectivity change between ipsilesional M1 (iM1) and contralesional Brodmann area 6 (including premotor area (cPMA) and supplementary motor area (SMA)) derived from fMRI, (c) training effect significantly correlated with information flow change from cPMA to iM1 and strongly correlated with information flow change from SMA to iM1 derived from EEG, and (d) consistency of fMRI and EEG results illustrated by the correlation between functional connectivity change and information flow change. Our study showed changes in the brain after the BCI training therapy from chronic stroke survivors and provided a better understanding of neural mechanisms, especially the interaction among motor-related brain regions during stroke recovery. Besides, our finding demonstrated the feasibility and consistency of combining multiple neuroimaging modalities to investigate the neuroplasticity change.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zijin Gu ◽  
Keith Wakefield Jamison ◽  
Mert Rory Sabuncu ◽  
Amy Kuceyeski

AbstractWhite matter structural connections are likely to support flow of functional activation or functional connectivity. While the relationship between structural and functional connectivity profiles, here called SC-FC coupling, has been studied on a whole-brain, global level, few studies have investigated this relationship at a regional scale. Here we quantify regional SC-FC coupling in healthy young adults using diffusion-weighted MRI and resting-state functional MRI data from the Human Connectome Project and study how SC-FC coupling may be heritable and varies between individuals. We show that regional SC-FC coupling strength varies widely across brain regions, but was strongest in highly structurally connected visual and subcortical areas. We also show interindividual regional differences based on age, sex and composite cognitive scores, and that SC-FC coupling was highly heritable within certain networks. These results suggest regional structure-function coupling is an idiosyncratic feature of brain organisation that may be influenced by genetic factors.


NeuroImage ◽  
2019 ◽  
Vol 196 ◽  
pp. 318-328 ◽  
Author(s):  
Feliberto de la Cruz ◽  
Andy Schumann ◽  
Stefanie Köhler ◽  
Jürgen R. Reichenbach ◽  
Gerd Wagner ◽  
...  

2017 ◽  
Author(s):  
Janine D. Bijsterbosch ◽  
Mark W. Woolrich ◽  
Matthew F. Glasser ◽  
Emma C. Robinson ◽  
Christian F. Beckmann ◽  
...  

AbstractBrain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behavior. For example, studies have used "functional connectivity fingerprints" to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits.


Author(s):  
Janine Diane Bijsterbosch ◽  
Mark W Woolrich ◽  
Matthew F Glasser ◽  
Emma C Robinson ◽  
Christian F Beckmann ◽  
...  

2018 ◽  
Author(s):  
Alican Nalci ◽  
Bhaskar D. Rao ◽  
Thomas T. Liu

AbstractIn resting-state fMRI, dynamic functional connectivity (DFC) measures are used to characterize temporal changes in the brain’s intrinsic functional connectivity. A widely used approach for DFC estimation is the computation of the sliding window correlation between blood oxygenation level dependent (BOLD) signals from different brain regions. Although the source of temporal fluctuations in DFC estimates remains largely unknown, there is growing evidence that they may reflect dynamic shifts between functional brain networks. At the same time, recent findings suggest that DFC estimates might be prone to the influence of nuisance factors such as the physiological modulation of the BOLD signal. Therefore, nuisance regression is used in many DFC studies to regress out the effects of nuisance terms prior to the computation of DFC estimates. In this work we examined the relationship between DFC estimates and nuisance factors. We found that DFC estimates were significantly correlated with temporal fluctuations in the magnitude (norm) of various nuisance regressors, with significant correlations observed in the majority (76%) of the cases examined. Significant correlations between the DFC estimates and nuisance regressor norms were found even when the underlying correlations between the nuisance and fMRI time courses were relatively small. We then show that nuisance regression does not eliminate the relationship between DFC estimates and nuisance norms, with significant correlations observed in the majority (71%) of the cases examined after nuisance regression. We present theoretical bounds on the difference between DFC estimates obtained before and after nuisance regression and relate these bounds to limitations in the efficacy of nuisance regression with regards to DFC estimates.


2020 ◽  
Vol 133 (4) ◽  
pp. 774-786 ◽  
Author(s):  
Rebecca M. Pullon ◽  
Lucy Yan ◽  
Jamie W. Sleigh ◽  
Catherine E. Warnaby

Background It is a commonly held view that information flow between widely separated regions of the cerebral cortex is a necessary component in the generation of wakefulness (also termed “connected” consciousness). This study therefore hypothesized that loss of wakefulness caused by propofol anesthesia should be associated with loss of information flow, as estimated by the effective connectivity in the scalp electroencephalogram (EEG) signal. Methods Effective connectivity during anesthesia was quantified by applying bivariate Granger to multichannel EEG data recorded from 16 adult subjects undergoing a slow induction of, and emergence from, anesthesia with intravenous propofol. During wakefulness they were conducting various auditory and motor tasks. Functional connectivity using EEG coherence was also estimated. Results There was an abrupt, substantial, and global decrease in effective connectivity around the point of loss of responsiveness. Recovery of behavioral responsiveness was associated with a comparable recovery in information flow pattern (expressed as normalized values). The median (interquartile range) change was greatest in the delta frequency band: decreasing from 0.15 (0.21) 2 min before loss of behavioral response, to 0.06 (0.04) 2 min after loss of behavioral response (P < 0.001). Regional decreases in information flow were maximal in a posteromedial direction from lateral frontal and prefrontal regions (0.82 [0.24] 2 min before loss of responsiveness, decreasing to 0.17 [0.05] 2 min after), and least for information flow from posterior channels. The widespread decrease in bivariate Granger causality reflects loss of cortical coordination. The relationship between functional connectivity (coherence) and effective connectivity (Granger causality) was inconsistent. Conclusions Propofol-induced unresponsiveness is marked by a global decrease in information flow, greatest from the lateral frontal and prefrontal brain regions in a posterior and medial direction. Loss of information flow may be a useful measure of connected consciousness. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


2015 ◽  
Vol 27 (4pt2) ◽  
pp. 1577-1589 ◽  
Author(s):  
Kelly Jedd ◽  
Ruskin H. Hunt ◽  
Dante Cicchetti ◽  
Emily Hunt ◽  
Raquel A. Cowell ◽  
...  

AbstractChildhood maltreatment is a serious individual, familial, and societal threat that compromises healthy development and is associated with lasting alterations to emotion perception, processing, and regulation (Cicchetti & Curtis, 2005; Pollak, Cicchetti, Hornung, & Reed, 2000; Pollak & Tolley-Schell, 2003). Individuals with a history of maltreatment show altered structural and functional brain development in both frontal and limbic structures (Hart & Rubia, 2012). In particular, previous research has identified hyperactive amygdala responsivity associated with childhood maltreatment (e.g., Dannlowski et al., 2012). However, less is known about the impact of maltreatment on the relationship between the amygdala and other brain regions. The present study employed an emotion processing functional magnetic resonance imaging task to examine task-based activation and functional connectivity in adults who experienced maltreatment as children. The sample included adults with a history of substantiated childhood maltreatment (n = 33) and comparison adults (n = 38) who were well matched on demographic variables, all of whom have been studied prospectively since childhood. The maltreated group exhibited greater activation than comparison participants in the prefrontal cortex and basal ganglia. In addition, maltreated adults showed increased amygdala connectivity with the hippocampus and prefrontal cortex. The results suggest that the intense early stress of childhood maltreatment is associated with lasting alterations to frontolimbic circuitry.


2016 ◽  
Vol 34 (5) ◽  
pp. 733-746 ◽  
Author(s):  
Paul W. Jones ◽  
Michael R. Borich ◽  
Irene Vavsour ◽  
Alex Mackay ◽  
Lara A. Boyd

Sign in / Sign up

Export Citation Format

Share Document