scholarly journals Are the “100 of the world’s worst” invasive species also the costliest?

Author(s):  
Ross Cuthbert ◽  
Christophe Diagne ◽  
Phillip J. Haubrock ◽  
Anna J Turbelin ◽  
Franck Courchamp

Abstract Biological invasions are increasing worldwide, damaging ecosystems and socioeconomic sectors. Two decades ago, the “100 of the world’s worst” invasive alien species list was established by the IUCN to improve communications, identifying particularly damaging ‘flagship’ invaders globally (hereafter, worst ). Whilst this list has bolstered invader awareness, whether worst species are especially economically damaging and how they compare to other invaders (hereafter, other ) remain unknown. Here, we quantify invasion costs using the most comprehensive global database compiling them (InvaCost). We compare these costs between worst and other species against sectorial, taxonomic and regional descriptors, and examine temporal cost trends. Only 60 of the 100 worst species had invasion costs considered as highly reliable and actually observed estimates (median: US$ 43 million). On average, these costs were significantly higher than the 463 other invasive species recorded in InvaCost (median: US$ 0.53 million), although some other species had higher costs than most worst species. Damages to the environment from the worst species dominated, whereas other species largely impacted agriculture. Disproportionately highest worst species costs were incurred in North America, whilst costs were more evenly distributed for other species; animal invasions were always costliest. Proportional management expenditures were low for the other species, and surprisingly, over twice as low for the worst species. Temporally, costs increased more for the worst than other taxa; however, management spending has remained very low for both groups. Nonetheless, since 40 species had no robust and/or reported costs, the “true” cost of “some of the world’s worst ” 100 invasive species still remains unknown.

Author(s):  
Ross N. Cuthbert ◽  
Christophe Diagne ◽  
Phillip J. Haubrock ◽  
Anna J. Turbelin ◽  
Franck Courchamp

AbstractBiological invasions are increasing worldwide, damaging ecosystems and socioeconomic sectors. Two decades ago, the “100 of the world’s worst” invasive alien species list was established by the IUCN to improve communications , identifying particularly damaging ‘flagship’ invaders globally (hereafter, worst). Whilst this list has bolstered invader awareness, whether worst species are especially economically damaging and how they compare to other invaders (hereafter, other) remain unknown. Here, we quantify invasion costs using the most comprehensive global database compiling them (InvaCost). We compare these costs between worst and other species against sectorial, taxonomic and regional descriptors, and examine temporal cost trends. Only 60 of the 100 worst species had invasion costs considered as highly reliable and actually observed estimates (median: US$ 43 million). On average, these costs were significantly higher than the 463 other invasive species recorded in InvaCost (median: US$ 0.53 million), although some other species had higher costs than most worst species. Damages to the environment from the worst species dominated, whereas other species largely impacted agriculture. Disproportionately highest worst species costs were incurred in North America, whilst costs were more evenly distributed for other species; animal invasions were always costliest. Proportional management expenditures were low for the other species, and surprisingly, over twice as low for the worst species. Temporally, costs increased more for the worst than other taxa; however, management spending has remained very low for both groups. Nonetheless, since 40 species had no robust and/or reported costs, the “true” cost of “some of the world’s worst” 100 invasive species still remains unknown.


2020 ◽  
Author(s):  
Boris Leroy ◽  
Andrew M Kramer ◽  
Anne-Charlotte Vaissière ◽  
Franck Courchamp ◽  
Christophe Diagne

Aim: Large-scale datasets are becoming increasingly available for macroecological research from different disciplines. However, learning their specific extraction and analytical requirements can become prohibitively time-consuming for researchers. We argue that this issue can be tackled with the provision of methodological frameworks published in open-source software. We illustrate this solution with the invacost R package, an open-source software designed to query and analyse the global database on reported economic costs of invasive alien species, InvaCost. Innovations: First, the invacost package provides updates of this dynamic database directly in the analytical environment R. Second, it helps understand the nature of economic cost data for invasive species, their harmonisation process, and the inherent biases associated with such data. Third, it readily provides complementary methods to query and analyse the costs of invasive species at the global scale, all the while accounting for econometric statistical issues. Main conclusions: This tool will be useful for scientists working on invasive alien species, by (i) facilitating access and use to this multi-disciplinary data resource and (ii) providing a standard procedure which will facilitate reproducibility and comparability of studies, one of the major critics of this topic until now. We discuss how the development of this R package was designed as an enforcement of general recommendations for transparency, reproducibility and comparability of science in the era of big data in ecology.


2021 ◽  
Author(s):  
Giovanni Spampinato ◽  
Valentina Lucia Astrid Laface ◽  
Giandomenico Posillipo ◽  
Ana Cano Ortiz ◽  
Ricardo Quinto Canas ◽  
...  

Abstract An updated checklist of the Calabrian alien vascular flora is presented. The alien flora of the Calabria region (Southern Italy) representing almost 12% of the regional flora and comprises 381 alien taxa, among which there are 370 angiosperms, 9 gymnosperms and 2 ferns. In relation to the state of spread, 35 invasive alien species (IAS) have been identified (4 of these are included in the list of Union Concern, sensu Regulation (EU) no. 1143/2014) which represent 9% of the Calabrian alien flora.In the last years the alien flora in Calabria has increased: in particular, alien species have increased over a decade from 190 to the current 381 taxa. If on the one hand this is due to new introductions, resulting from the globalization that relentlessly affects the whole planet, on the other hand it is to be linked to awareness of the problem of alien species and the increasing intensity of research in recent decades. This study would provide a baseline for further advanced studies on the management of invasive species and on the invasion ecology.


2017 ◽  
Vol 7 (4) ◽  
pp. 52
Author(s):  
Alena Rendekova ◽  
Zuzana Randakova ◽  
Jan Miskovic ◽  
Karol Micieta

Biological invasions represent one of the most serious global environmental threats. One of their negative aspects is a biodiversity loss in the natural ecosystems. Our study reports the results of the evaluation of changes in the proportion of invasive alien species and the results of the evaluation of the changes of the diversity in various types of forest, grassland and ruderal vegetation of Bratislava city over the time. In total, 26 invasive alien taxa were recorded in the vegetation of Bratislava. The majority of invasive taxa were recorded in both time periods. Five invasive species (Echinocystis lobata, Fallopia japonica, Helianthus tuberosus, Juncus tenuis, and Solidago canadensis) were recorded only in the more recent period. Most of the invasive species prefer ruderal habitats, and some of them also invade the forest vegetation (mainly the floodplain forests). In the dry grasslands of the class Festuco-Brometea, no invasive species were recorded in both periods. The statistical analysis revealed the increase of the average percentual number of invasive alien species in the majority of classes of the forest and ruderal vegetation of Bratislava over the time. In the majority of classes, where the proportion of invasive species increased, the Shannon–Wiener index of diversity of all species decreased significantly over the time. Our results contribute to the knowledge about biological invasions in cities.


NeoBiota ◽  
2019 ◽  
Vol 48 ◽  
pp. 113-127 ◽  
Author(s):  
Jorge E. Ramírez-Albores ◽  
Ernesto I. Badano ◽  
Joel Flores ◽  
José Luis Flores-Flores ◽  
Laura Yáñez-Espinosa

Interest in invasive species has increased around the world over the last several decades. In Mexico, studies on invasive species date as early as 1939 and the number of publications has increased considerably in recent decades. However, to our knowledge, the analysis of information gaps and research priorities is lacking. Therefore, it is necessary to identify gaps in the knowledge of invasive species in order to define future research priorities and focus conservation efforts. We assessed the current state of knowledge of biological invasions in Mexico based on the existing literature. Our aim was to identify in which areas information is absent or insufficient and which areas should be prioritised. We identified a total of 869 references. The number of references increased over time and the topics were strongly biased towards two areas: 1) natural history and geographical distribution patterns and 2) effects on native biota and ecosystems. The remaining topics were only moderately or poorly studied. Most studies focused on vascular plants (n = 280) and fishes (n = 174). Notably, a large portion of the references (n = 215) focused on only eight invasive alien species, including their ecological and socioeconomic impacts. Only 95 references examined the effects of alien species on biodiversity; these studies were mainly carried out on islands (n = 41) or in terrestrial or freshwater ecosystems in protected natural areas (n = 165). The findings of the present review can guide future studies in filling in the existing research gaps on biological invasions. Additionally, future studies should aim to define national priorities of the impacts of biological invasions and to promote the prevention and control of alien species by considering the distinct vectors and pathways of introduction and movement.


2018 ◽  
Vol 2 ◽  
pp. e24749
Author(s):  
Quentin Groom ◽  
Tim Adriaens ◽  
Damiano Oldoni ◽  
Lien Reyserhove ◽  
Diederik Strubbe ◽  
...  

Reducing the damage caused by invasive species requires a community approach informed by rapidly mobilized data. Even if local stakeholders work together, invasive species do not respect borders, and national, continental and global policies are required. Yet, in general, data on invasive species are slow to be mobilized, often of insufficient quality for their intended application and distributed among many stakeholders and their organizations, including scientists, land managers, and citizen scientists. The Belgian situation is typical. We struggle with the fragmentation of data sources and restrictions to data mobility. Nevertheless, there is a common view that the issue of invasive alien species needs to be addressed. In 2017 we launched the Tracking Invasive Alien Species (TrIAS) project, which envisages a future where alien species data are rapidly mobilized, the spread of exotic species is regularly monitored, and potential impacts and risks are rapidly evaluated in support of policy decisions (Vanderhoeven et al. 2017). TrIAS is building a seamless, data-driven workflow, from raw data to policy support documentation. TrIAS brings together 21 different stakeholder organizations that covering all organisms in the terrestrial, freshwater and marine environments. These organizations also include those involved in citizen science, research and wildlife management. TrIAS is an Open Science project and all the software, data and documentation are being shared openly (Groom et al. 2018). This means that the workflow can be reused as a whole or in part, either after the project or in different countries. We hope to prove that rapid data workflows are not only an indispensable tool in the control of invasive species, but also for integrating and motivating the citizens and organizations involved.


2020 ◽  
Vol 6 ◽  
Author(s):  
Stelios Katsanevakis ◽  
Konstantinos Tsirintanis ◽  
Maria Sini ◽  
Vasilis Gerovasileiou ◽  
Nikoletta Koukourouvli

ALAS aims to fill knowledge gaps on the impacts of marine alien species in the Aegean Sea, and support marine managers and policy makers in prioritizing mitigation actions. The project will focus on under-studied alien-native interactions, priority and vulnerable habitats (such as shallow forests of canopy algae and underwater caves), and apply a multitude of approaches. It will apply a standardized, quantitative method for mapping Cumulative IMpacts of invasive Alien species on marine ecosystems (CIMPAL), according to which cumulative impact scores are estimated on the basis of the distributions of invasive species and ecosystems, and both the reported magnitude of ecological impacts and the strength of such evidence. Towards that direction, ALAS will improve our knowledge base and compile the needed information to estimate CIMPAL by (1) conducting a series of field experiments and surveys to investigate the impacts of selected invasive alien species on marine habitats, (2) producing high-resolution habitat maps in the coastal zone, refining the results of previous research efforts through fieldwork, remote sensing and satellite imaging, (3) producing species distribution models for all invasive species, based on extensive underwater surveys for the collection of new data and integrating all existing information. ALAS will incorporate skills and analyses in novel ways and provide high-resolution results at a large scale; couple classic and novel tools and follow a trans-disciplinary approach, combining knowledge from the fields of invasion biology, conservation biology, biogeography, fisheries science, marine ecology, remote sensing, statistical modelling; conduct for the first time in the Aegean Sea a comprehensive, high-resolution analysis of cumulative impacts of invasive alien species; and report results in formats appropriate for decision-makers and society, thus transferring research-based knowledge to inform and influence policy decisions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pedro Morais ◽  
João Encarnação ◽  
Maria Alexandra Teodósio ◽  
Ester Dias

About 3.1 billion people around the world live within 100 km of the coastline. If you are one of those people, then you also live near an estuary. What you probably do not know is that many alien species live in this underwater world, and we are not talking about extraterrestrial species from outer space. Are you scared? Well, do not be! These alien species are from planet Earth. In this article, we will tell you what alien species are, why scientists study them, how any species may become an alien, and how a few alien species may become an invasive species. You will also learn how you can help scientists find and track alien species, and how to defeat them. Along the way, we will give examples of alien species living in the San Francisco Estuary in North America, a paradise for hundreds of alien species.


Sign in / Sign up

Export Citation Format

Share Document