scholarly journals Identification of the tetrad-sterility-causing Solanum stoloniferum cytoplasm in interspecific hybrids with S. tuberosum

Author(s):  
Rena Sanetomo ◽  
Akito Nashiki

Abstract Tetrad sterility, in which only clumps of four premature pollen grains are released from anthers, has been observed in some modern potato cultivars. It is a form of cytoplasmic male sterility caused by the cytoplasm derived from the Mexican tetraploid species Solanum stoloniferum Schlechtd. et Bché., an important source of resistance to Potato virus Y in potato breeding. However, since S. stoloniferum is highly polymorphic, the source of tetrad-sterility-causing cytoplasm is unknown among diverse S. stoloniferum accessions. In this study, we directly crossed 24 S. stoloniferum accessions with pollen from 4x S. tuberosum and obtained 39 hybrids from 12 accessions. Nineteen hybrids from six accessions showed tetrad sterility, with either D/γ- or W/γ-type cytoplasm, and were triploid, tetraploid, or hexaploid. The W/γ-type cytoplasm was not necessarily associated with tetrad sterility. Sequence comparisons of 17 mitochondrial genes and their intergenic regions revealed a length polymorphism in the intergenic region between rpl5 and rps10, in which an amplified band of 859 bp was associated with tetrad sterility. This specific cytoplasm causing tetrad sterility is named TSCsto. The 859-bp band would be a useful diagnostic marker for identifying TSCsto in potato breeding.

2011 ◽  
Vol 11 (3) ◽  
pp. 241-249 ◽  
Author(s):  
Carlos Eduardo da Silva Monteiro ◽  
Telma Nair Santana Pereira ◽  
Karina Pereira de Campos

The objective of this study was the reproductive characterization of Capsicum accessions as well as of interspecific hybrids, based on pollen viability. Hybrids were obtained between Capsicum species. Pollen viability was high in most accessions, indicating that meiosis is normal, resulting in viable pollen grains. The pollen viability of species C. pubescens was the lowest (27 %). The interspecific hybrids had varying degrees of pollen viability, from fertile combinations (C. chinense x C. frutescens and C. annuum x C. baccatum) to male sterile combinations. Pollen viability also varied within the hybrid combination according to accessions used in the cross. Results indicate that male sterility is one of the incompatibility barriers among Capsicum species since hybrids can be established, but may be male sterile.


2002 ◽  
Vol 51 (2) ◽  
pp. 117-126 ◽  
Author(s):  
N. Boonham ◽  
K. Walsh ◽  
M. Hims ◽  
S. Preston ◽  
J. North ◽  
...  

1971 ◽  
Vol 13 (3) ◽  
pp. 437-442 ◽  
Author(s):  
K. Lesins

Colchicine treatment of hybrids from the interspecific cross Medicago pironae Vis. × M. daghestanica Rupr. induced the formation of three tetraploid shoots, one with 2n = 29 and two with 2n = 32, in their somatic nuclei. Their flowers had 21, 44 and 62% plasma-filled pollen, respectively. No seed was obtained from these tetraploids after selfing and intercrossing more than 1,200 flowers, indicating the presence of a built-in fertility barrier between the two species.By applying pollen from the tetraploid hybrids to alfalfa (M. sativn L.) two trispecies hybrids with 2n = 34 and 30 chromosomcs were produced. The first had 32%, the second 22% plasma-filled pollen grains. On backcrossing to M. sativa, a higher seed set was obtained with pollen from the 2n = 34 plant than from the 2n = 30 plant. Meiosis in the 2n = 30 plant was abnormal. At MI multivalents were observed, indicating that chromosomal material may be interchanged between M. pironae-daghestanica and M. sativa. Approximately half the meiocytes at AI possessed lagging chromosomes and only 6% of secondary meiocytes at AII were without disturbances.


1996 ◽  
Vol 26 (3) ◽  
pp. 428-432 ◽  
Author(s):  
Andrew J. David ◽  
Daniel E. Keathley

Fifteen interspecific hybrids of Serbian spruce (Piceaomorika (Panc) Purkyne) and white spruce (Piceaglauca (Moench) Voss) representing five separate crosses, including reciprocals, were used to demonstrate maternal inheritance of mitochondrial DNA. Total DNA was extracted from foliage samples of Serbian spruce (S), white spruce (W), and both S(♂) × W(♀) and W(♂) × S(♀) hybrids, digested and probed with one of two maize mitochondrial genes, ATPaseα or COXII. ATPaseα generated diagnostic Serbian and white spruce genotypes for all five enzymes tested, while COXII differentiated between the two species for four of five enzymes. Maternal inheritance was indicated in all hybrids for every diagnostic enzyme–probe combination. No paternal or nonparental bands were detected. A dilution experiment indicated that the Serbian and white spruce mitochondrial DNA restriction fragment length polymorphisms could be detected in as little as 60 and 500 ng of total DNA, respectively. It appears that the mechanism that controls the inheritance of mitochondria in Picea is still functional in wide interspecific crosses.


1994 ◽  
Vol 35 (8) ◽  
pp. 1239-1244 ◽  
Author(s):  
Hiraku Itadani ◽  
Tatsuya Wakasugi ◽  
Mamoru Sugita ◽  
Masahiro Sugiura ◽  
Mikio Nakazono ◽  
...  

2003 ◽  
Vol 69 (6) ◽  
pp. 3137-3143 ◽  
Author(s):  
Rozenn Gardan ◽  
Pascale Cossart ◽  
Jean Labadie

ABSTRACT The capacity of Listeria monocytogenes to tolerate salt and alkaline stresses is of particular importance, as this pathogen is often exposed to such environments during food processing and food preservation. We screened a library of Tn917-lacZ insertional mutants in order to identify genes involved in salt and/or alkaline tolerance. We isolated six mutants sensitive to salt stress and 12 mutants sensitive to salt and alkaline stresses. The position of the insertion of the transposon was located in 15 of these mutants. In six mutants the transposon was inserted in intergenic regions, and in nine mutants it was inserted in genes. Most of the genes have unknown functions, but sequence comparisons indicated that they encode putative transporters.


Sign in / Sign up

Export Citation Format

Share Document