scholarly journals Weakly Supervised Underwater Fish Segmentation Using Affinity LCFCN

Author(s):  
Alzayat Saleh ◽  
Issam Laradji ◽  
Pau Rodriguez ◽  
Derek Nowrouzezahrai ◽  
Mostafa Rahimi Azghadi ◽  
...  

Abstract Estimating fish body measurements like length, width, and mass has received considerable research due to its potential in boosting productivity in marine and aquaculture applications. Some methods are based on manual collection of these measurements using tools like a ruler which is time consuming and labour intensive. Others rely on fully-supervised segmentation models to automatically acquire these measurements but require collecting per-pixel labels which are also time consuming. It can take up to 2 minutes per fish to acquire accurate segmentation labels. To address this problem, we propose a segmentation model that can efficiently train on images labeled with point-level supervision, where each fish is annotated with a single click. This labeling scheme takes an average of only 1 second per fish. Our model uses a fully convolutional neural network with one branch that outputs per-pixel scores and another that outputs an affinity matrix. These two outputs are aggregated using a random walk to get the final, refined per-pixel output. The whole model is trained end-to-end using the LCFCN loss and thus we call our method Affinity-LCFCN (A-LCFCN). We conduct experiments on the DeepFish dataset, which contains several fish habitats from north-eastern Australia. The results show that A-LCFCN outperforms a fully-supervised segmentation model when the annotation budget is fixed. They also show that A-LCFCN achieves better segmentation results than LCFCN and a standard baseline.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Issam H. Laradji ◽  
Alzayat Saleh ◽  
Pau Rodriguez ◽  
Derek Nowrouzezahrai ◽  
Mostafa Rahimi Azghadi ◽  
...  

AbstractEstimating fish body measurements like length, width, and mass has received considerable research due to its potential in boosting productivity in marine and aquaculture applications. Some methods are based on manual collection of these measurements using tools like a ruler which is time consuming and labour intensive. Others rely on fully-supervised segmentation models to automatically acquire these measurements but require collecting per-pixel labels which are also time consuming. It can take up to 2 minutes per fish to acquire accurate segmentation labels. To address this problem, we propose a segmentation model that can efficiently train on images labeled with point-level supervision, where each fish is annotated with a single click. This labeling scheme takes an average of only 1 second per fish. Our model uses a fully convolutional neural network with one branch that outputs per-pixel scores and another that outputs an affinity matrix. These two outputs are aggregated using a random walk to get the final, refined per-pixel output. The whole model is trained end-to-end using the localization-based counting fully convolutional neural network (LCFCN) loss and thus we call our method Affinity-LCFCN (A-LCFCN). We conduct experiments on the DeepFish dataset, which contains several fish habitats from north-eastern Australia. The results show that A-LCFCN outperforms a fully-supervised segmentation model when the annotation budget is fixed. They also show that A-LCFCN achieves better segmentation results than LCFCN and a standard baseline.


Phytotaxa ◽  
2013 ◽  
Vol 133 (1) ◽  
pp. 1 ◽  
Author(s):  
GLENN B. MCGREGOR

This volume provides the first detailed account of the Chroococcales of north-eastern Australia. It provides keys, morphological and ecological data for 6 families, 33 genera and 112 species, and photomicrographs and original illustrations to enable the identification of natural populations based on stable and recognizable characters observable with the aid of light microscopy. Distributional data are based on extensive surveys at 270 sites representing the major freshwater habitats including rivers and streams, palustrine and lacustrine wetlands, thermal springs, and man-made reservoirs in Queensland and the Northern Territory as well as a review of the Australian phycological literature. 


Author(s):  
Zaid Al-Huda ◽  
Donghai Zhai ◽  
Yan Yang ◽  
Riyadh Nazar Ali Algburi

Deep convolutional neural networks (DCNNs) trained on the pixel-level annotated images have achieved improvements in semantic segmentation. Due to the high cost of labeling training data, their applications may have great limitation. However, weakly supervised segmentation approaches can significantly reduce human labeling efforts. In this paper, we introduce a new framework to generate high-quality initial pixel-level annotations. By using a hierarchical image segmentation algorithm to predict the boundary map, we select the optimal scale of high-quality hierarchies. In the initialization step, scribble annotations and the saliency map are combined to construct a graphic model over the optimal scale segmentation. By solving the minimal cut problem, it can spread information from scribbles to unmarked regions. In the training process, the segmentation network is trained by using the initial pixel-level annotations. To iteratively optimize the segmentation, we use a graphical model to refine segmentation masks and retrain the segmentation network to get more precise pixel-level annotations. The experimental results on Pascal VOC 2012 dataset demonstrate that the proposed framework outperforms most of weakly supervised semantic segmentation methods and achieves the state-of-the-art performance, which is [Formula: see text] mIoU.


1999 ◽  
Vol 50 (2) ◽  
pp. 159 ◽  
Author(s):  
D. Walker

Lakes Barrine and Eacham, ~1.0 and 0.5 km2 area, 67 and 63 m depth respectively, lie at ~740 m a.s.l., ~17°S in north-eastern Australia. Seasonal changes in their volumes modelled from meteorological data correspond well with observations at Eacham. Temperature profiles through 6 years show summer stratification with a metalimnion at 20–30 m; in winter, near isothermy is usually attained. At Barrine, thermal stability varies between winter and summer (<500 and >4000 g-cm cm-2 respectively). Mixing is related to low ground temperatures during periods of generally low thermal stability; exceptionally it penetrates to >60 m. Oxygen saturation decreases from the surface to ~20% at the base of the euphotic zone (15–21 m) but oxygen is carried lower by mixing after which anoxia commonly rises to ~40 m. At Barrine, Fe-reducing redox (<200 mV) usually occurs below 50 m, but during mixing this boundary falls to within 1 m of the mud–water interface. The Barrine solution is dilute (total dissolved solids 55–58 mg L-1), and that of Eacham is more so. A concentrated monimolimnion has developed in the lowermost 2–3 m at Barrine but not at Eacham. Sedimentation at the middle of each lake results from the continuous deposition of open-water products punctuated by the redistribution of coarser detritus from the ‘shallows’ at times of deep mixing. The resultant laminations are preserved only at Barrine, protected by the chemical stability of the monimolimnion.


Sign in / Sign up

Export Citation Format

Share Document