Engineering Elizabethkingia meningoseptica sp. F2 for Vitamin K2 production guided by genome analysis.

2020 ◽  
Author(s):  
Qiang Yang ◽  
zhiming zheng ◽  
Hui Liu ◽  
Peng Wang ◽  
Li Wang ◽  
...  

Abstract Background The species in family Elizabethkingia meningoseptica are interesting strain for investigating Vitamin K2 metabolic analysis. However, their genomic sequence, metabolic pathway, potential abilities, and evolutionary status are still unknown. Results This study therefore aimed to perform a genome sequencing of Elizabethkingia meningoseptica sp. F2 and further accomplished comparative analysis with other Vitamin K2 strains reveals overall identifying its unique/shared metabolic genes across genomes. The 3,874,794–base pair sequence of Elizabethkingia meningoseptica sp. F2 is presented. Of 3,539 genes annotation was applied. Results of synteny block demonstrated Elizabethkingia meningoseptica sp. F2 shares high levels of synteny with Elizabethkingia meningoseptica ATCC 13253 and Elizabethkingia meningoseptica NBRC 12535. Identification of Vitamin K2 metabolic pathway in Elizabethkingia meningoseptica sp. F2 were also accomplished. In addition, Elizabethkingia meningoseptica sp. F2 was resistant to gentamicin, streptomycin, ampicillin and caramycin, consistent with the presence of multiple genes encoding diverse multidrug efflux pump protein in the genome. Furthermore, By co-overexpression experiments of MenA and MenG, we showed that Vitamin K2 content was enhanced by 37% compared with control strain. Conclusions The genome analysis of Elizabethkingia meningoseptica sp. F2 in conjunction with the comparative metabolic pathways analysis among the E.coli, Bacillus subtilis and Streptomyces provided a useful information on the Vitamin K2 biosynthetic pathway and other related pathways at systems level.

2021 ◽  
Vol 22 (4) ◽  
pp. 2062
Author(s):  
Aneta Kaczor ◽  
Karolina Witek ◽  
Sabina Podlewska ◽  
Veronique Sinou ◽  
Joanna Czekajewska ◽  
...  

In the search for an effective strategy to overcome antimicrobial resistance, a series of new morpholine-containing 5-arylideneimidazolones differing within either the amine moiety or at position five of imidazolones was explored as potential antibiotic adjuvants against Gram-positive and Gram-negative bacteria. Compounds (7–23) were tested for oxacillin adjuvant properties in the Methicillin-susceptible S. aureus (MSSA) strain ATCC 25923 and Methicillin-resistant S. aureus MRSA 19449. Compounds 14–16 were tested additionally in combination with various antibiotics. Molecular modelling was performed to assess potential mechanism of action. Microdilution and real-time efflux (RTE) assays were carried out in strains of K. aerogenes to determine the potential of compounds 7–23 to block the multidrug efflux pump AcrAB-TolC. Drug-like properties were determined experimentally. Two compounds (10, 15) containing non-condensed aromatic rings, significantly reduced oxacillin MICs in MRSA 19449, while 15 additionally enhanced the effectiveness of ampicillin. Results of molecular modelling confirmed the interaction with the allosteric site of PBP2a as a probable MDR-reversing mechanism. In RTE, the compounds inhibited AcrAB-TolC even to 90% (19). The 4-phenylbenzylidene derivative (15) demonstrated significant MDR-reversal “dual action” for β-lactam antibiotics in MRSA and inhibited AcrAB-TolC in K. aerogenes. 15 displayed also satisfied solubility and safety towards CYP3A4 in vitro.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 255
Author(s):  
Salma M. Abdelaziz ◽  
Khaled M. Aboshanab ◽  
Ibrahim S. Yahia ◽  
Mahmoud A. Yassien ◽  
Nadia A. Hassouna

In this study, the correlation between the antibiotic resistance genes and antibiotic susceptibility among the carbapenem-resistant Gram-negative pathogens (CRGNPs) recovered from patients diagnosed with acute pneumonia in Egypt was found. A total of 194 isolates including Klebsiella pneumoniae (89; 46%), Escherichia coli (47; 24%) and Pseudomonas aeruginosa (58; 30%) were recovered. Of these, 34 (18%) isolates were multiple drug resistant (MDR) and carbapenem resistant. For the K. pneumoniae MDR isolates (n = 22), blaNDM (14; 64%) was the most prevalent carbapenemase, followed by blaOXA-48 (11; 50%) and blaVIM (4; 18%). A significant association (p value < 0.05) was observed between the multidrug efflux pump (AcrA) and resistance to β-lactams and the aminoglycoside acetyl transferase gene (aac-6’-Ib) gene and resistance to ciprofloxacin, azithromycin and β-lactams (except for aztreonam). For P. aeruginosa, a significant association was noticed between the presence of the blaSHV gene and the multidrug efflux pump (MexA) and resistance to fluoroquinolones, amikacin, tobramycin, co-trimoxazole and β-lactams and between the aac-6’-Ib gene and resistance to aminoglycosides. All P. aeruginosa isolates (100%) harbored the MexAB-OprM multidrug efflux pump while 86% of the K. pneumoniae isolates harbored the AcrAB-TolC pump. Our results are of great medical importance for the guidance of healthcare practitioners for effective antibiotic prescription.


2001 ◽  
Vol 203 (2) ◽  
pp. 235-239 ◽  
Author(s):  
M.Nazmul Huda ◽  
Yuji Morita ◽  
Teruo Kuroda ◽  
Tohru Mizushima ◽  
Tomofusa Tsuchiya

2013 ◽  
Vol 135 (42) ◽  
pp. 15754-15762 ◽  
Author(s):  
Yean Sin Ong ◽  
Andrea Lakatos ◽  
Johanna Becker-Baldus ◽  
Klaas M. Pos ◽  
Clemens Glaubitz

2000 ◽  
Vol 182 (9) ◽  
pp. 2363-2369 ◽  
Author(s):  
Manuel Espinosa-Urgel ◽  
Amparo Salido ◽  
Juan-Luis Ramos

ABSTRACT Many agricultural uses of bacteria require the establishment of efficient bacterial populations in the rhizosphere, for which colonization of plant seeds often constitutes a critical first step.Pseudomonas putida KT2440 is a strain that colonizes the rhizosphere of a number of agronomically important plants at high population densities. To identify the functions involved in initial seed colonization by P. putida KT2440, we subjected this strain to transposon mutagenesis and screened for mutants defective in attachment to corn seeds. Eight different mutants were isolated and characterized. While all of them showed reduced attachment to seeds, only two had strong defects in their adhesion to abiotic surfaces (glass and different plastics). Sequences of the loci affected in all eight mutants were obtained. None of the isolated genes had previously been described in P. putida, although four of them showed clear similarities with genes of known functions in other organisms. They corresponded to putative surface and membrane proteins, including a calcium-binding protein, a hemolysin, a peptide transporter, and a potential multidrug efflux pump. One other showed limited similarities with surface proteins, while the remaining three presented no obvious similarities with known genes, indicating that this study has disclosed novel functions.


2003 ◽  
Vol 47 (6) ◽  
pp. 419-427 ◽  
Author(s):  
Md. Nazmul Huda ◽  
Jing Chen ◽  
Yuji Morita ◽  
Teruo Kuroda ◽  
Tohru Mizushima ◽  
...  

2003 ◽  
Vol 47 (2) ◽  
pp. 665-669 ◽  
Author(s):  
Melissa A. Visalli ◽  
Ellen Murphy ◽  
Steven J. Projan ◽  
Patricia A. Bradford

ABSTRACT Tigecycline has good broad-spectrum activity against many gram-positive and gram-negative pathogens with the notable exception of the Proteeae. A study was performed to identify the mechanism responsible for the reduced susceptibility to tigecycline in Proteus mirabilis. Two independent transposon insertion mutants of P. mirabilis that had 16-fold-increased susceptibility to tigecycline were mapped to the acrB gene homolog of the Escherichia coli AcrRAB efflux system. Wild-type levels of decreased susceptibility to tigecycline were restored to the insertion mutants by complementation with a clone containing a PCR-derived fragment from the parental wild-type acrRAB efflux gene cluster. The AcrAB transport system appears to be associated with the intrinsic reduced susceptibility to tigecycline in P. mirabilis.


Sign in / Sign up

Export Citation Format

Share Document