scholarly journals The Binding Behaviors between Cyclopentanocucurbit[6]uril and Three Amino Acids in the Solid and the Solution Phases

2020 ◽  
Author(s):  
Si Yuan Cheng ◽  
Wei Wei Zhao ◽  
Xi Nan Yang ◽  
Lian Tong Wei ◽  
Zhu Tao ◽  
...  

Abstract Binding behaviors between CyP 6 Q[6] and three have been investigated by means of X-ray crystallography, 1 H NMR spectroscopy,amino acids and isothermal titration calorimetry (ITC). The results showed that CyP 6 Q[6] forms a 1:2 inclusion complex with glycine, but 1:1 complexes with both leucine and lysine. Whereas the carboxyl group of glycine can enter the interior of the cavity of CyP6Q[6], only the alkyl chains of leucine and lysine can enter this cavity. Interestingly, leucine can adopt two different self-assembly modes upon its interaction with cucurbituril, depending on the external conditions, whereas glycine and lysine do not exhibit such behavior.

2020 ◽  
Author(s):  
Si Yuan Cheng ◽  
Wei Wei Zhao ◽  
Xi Nan Yang ◽  
Lian Tong Wei ◽  
Zhu Tao ◽  
...  

Abstract Binding behaviors between CyP6Q[6] and three amino acids have been investigated by means of X-ray crystallography, proton nuclear magnetic resonance (1H NMR) spectroscopy, amino acids and isothermal titration calorimetry (ITC). The results showed that CyP6Q[6] forms a 1:2 inclusion complex with glycine, but 1:1 complexes with both leucine and lysine. Whereas the carboxyl group of glycine can enter the interior of the cavity of CyP6Q[6], only the alkyl chains of leucine and lysine can enter this cavity. Interestingly, leucine can adopt two different self-assembly modes upon its interaction with cucurbituril, depending on the external conditions, whereas glycine and lysine do not exhibit such behavior.


2020 ◽  
Author(s):  
Si Yuan Cheng ◽  
Wei Wei Zhao ◽  
Xi Nan Yang ◽  
Lian Tong Wei ◽  
Zhu Tao ◽  
...  

Abstract Binding behaviors between CyP 6 Q[6] and three amino acids have been investigated by means of X-ray crystallography, proton nuclear magnetic resonance ( 1 H NMR) spectroscopy, amino acids and isothermal titration calorimetry (ITC). The results showed that CyP 6 Q[6] forms a 1:2 inclusion complex with glycine, but 1:1 complexes with both leucine and lysine. Whereas the carboxyl group of glycine can enter the interior of the cavity of CyP 6 Q[6], only the alkyl chains of leucine and lysine can enter this cavity. Interestingly, leucine can adopt two different self-assembly modes upon its interaction with cucurbituril, depending on the external conditions, whereas glycine and lysine do not exhibit such behavior.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Siyuan Cheng ◽  
Weiwei Zhao ◽  
Xinan Yang ◽  
Ye Meng ◽  
Liantong Wei ◽  
...  

Binding behaviours between cyclopentanocucurbit[6]uril (CyP 6 Q[6]) and three amino acids have been investigated by means of X-ray crystallography, proton nuclear magnetic resonance spectroscopy and isothermal titration calorimetry. The results showed that CyP 6 Q[6] forms a 1 : 2 inclusion complex with glycine, but 1 : 1 complexes with both leucine and lysine. Whereas the carboxyl group of glycine can enter the interior of the cavity of CyP 6 Q[6], only the alkyl chains of leucine and lysine can enter this cavity. Interestingly, leucine can adopt two different self-assembly modes upon its interaction with cucurbituril, depending on the external conditions, whereas glycine and lysine do not exhibit such behaviour.


2005 ◽  
Vol 60 (10) ◽  
pp. 1049-1053 ◽  
Author(s):  
Zeanab Talaei ◽  
Ali Morsali ◽  
Ali R. Mahjoub

Two new ZnII(phen)2 complexes with trichloroacetate and acetate anions, [Zn(phen)2(CCl3COO)- (H2O)](ClO4) and [Zn(phen)2(CH3COO)](ClO4), have been synthesized and characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopy. The single crystal X-ray data of these compounds show the Zn atoms to have six-coordinate geometry. From IR spectra and X-ray crystallography it is established that the coordination of the COO− group is different for trichloroacetate and acetate. The former acts as a monodentate whereas the latter acts as a bidentate ligand.


1998 ◽  
Vol 76 (1) ◽  
pp. 125-135 ◽  
Author(s):  
Donald L Hooper ◽  
Ian R Pottie ◽  
Marc Vacheresse ◽  
Keith Vaughan

A series of novel bistriazenes, the 1,2-bis(1-aryl-3-methyltriazen-3-yl)ethanes, Ar-N T N-NMe-CH2CH2-NMe-N T N-Ar, have been synthesized by diazonium coupling with N,N'-dimethylethylenediamine. These bistriazenes are stable crystalline compounds and have been unequivocally characterized by IR and NMR spectroscopy (1H and 13C), and elemental analysis. The structures of two compounds in the series have been confirmed by X-ray crystallography. The 1H NMR spectra show significant line broadening of the N-methyl resonances arising from the restricted rotation around the N2-N3 bond of the triazene units. The presence of strongly electron-withdrawing groups on the aryl ring restricts the rotation to the point where the N-methyl signals of the rotamers are distinct even at room temperature; four resonances of the N-methyl signal are clearly evident and these can be assigned to the anti-anti, syn-syn, and syn-anti conformations of the bistriazene. Diazonium coupling with N,N'-diethylethylenediamine affords the N,N'-diethyl homologues of the bistriazenes, which have been similarly characterized. As model compounds to assist in spectroscopic analysis, a series of related triazenes, the 1-(1-aryl-3-methyltriazen-3-yl)-N,N-dimethyl-2-ethanamines, were prepared by diazonium coupling with N,N,N'-trimethylethylenediamine. These dialkyltriazenes exist mainly as oils, but characterization was achieved by IR, 1H NMR, and 13C NMR spectroscopy, also showing the presence of two rotamers in solution when strongly electron-withdrawing substituents are bonded to the aryl moiety.Key words: triazene, bistriazene, diazonium, ethylenediamine, molecular dynamics, NMR.


2004 ◽  
Vol 59 (3) ◽  
pp. 291-297 ◽  
Author(s):  
Andreas Sofetis ◽  
Giannis S. Papaefstathiou ◽  
Aris Terzis ◽  
Catherine P. Raptopoulou ◽  
Theodoros F. Zafiropoulos

The reaction of Ga2(SO4)3·18H2O and excess 2,2′:6′,2″-terpyridine (terpy) in MeOH / H2O leads to [Ga(OH)(SO4)(terpy)(H2O)]·H2O (1·H2O] in good yield. The structure of the complex has been determined by single-crystal X-ray crystallography. The GaIII atom in 1·H2O is 6-coordinate and ligation is provided by one terdentate terpy molecule, one monodentate sulfate, one terminal hydroxide and one terminal H2O molecule; the coodination polyhedron about the metal is described as a distorted octahedron. There is an extensive hydrogen-bonding network in the crystal structure which generates corrugated layers parallel to bc. The new complex was characterized by IR and 1H NMR spectroscopy. The spectroscopic data are discussed in terms of the nature of bonding


2015 ◽  
Vol 71 (7) ◽  
pp. 578-583 ◽  
Author(s):  
William Clegg ◽  
Ross W. Harrington ◽  
Kazem Barati ◽  
Mohammad Hossein Habibi ◽  
Morteza Montazerozohori ◽  
...  

Reaction of copper(I) thiocyanate and triphenylphosphane with the bidentate Schiff baseN,N′-bis(trans-2-nitrocinnamaldehyde)ethylenediamine {Nca2en, (1); systematic name (1E,1′E,2E,2′E)-N,N′-(ethane-1,2-diyl)bis[3-(2-nitrophenyl)prop-2-en-1-imine]}, C20H18N4O4, in a 1:1:1 molar ratio in acetonitrile resulted in the formation of the complex {(1E,1′E,2E,2′E)-N,N′-(ethane-1,2-diyl)bis[3-(2-nitrophenyl)prop-2-en-1-imine]-κ2N,N′}(thiocyanato-κN)(triphenylphosphane-κP)copper(I)], [Cu(NCS)(C20H18N4O4)(C18H15P)] or [Cu(NCS)(Nca2en)(PPh3)], (2). The Schiff base and copper(I) complex have been characterized by elemental analyses, IR, electronic and1H NMR spectroscopy, and X-ray crystallography [from synchrotron data for (1)]. The molecule of (1) lies on a crystallographic inversion centre, with atransconformation for the ethylenediamine unit, and displays significant twists from coplanarity of its nitro group, aromatic ring, conjugated chain and especially ethylenediamine segments. It acts as a bidentate ligand coordinatingviathe imine N atoms to the CuIatom in complex (2), in which the ethylenediamine unit necessarily adopts a somewhat flattenedgaucheconformation, resulting in a rather bowed shape overall for the ligand. The NCS−ligand is coordinated through its N atom. The geometry around the CuIatom is distorted tetrahedral, with a small N—Cu—N bite angle of 81.56 (12)° and an enlarged opposite angle of 117.29 (9)° for SCN—Cu—P. Comparisons are made with the analogous Schiff base having no nitro substituents and with metal complexes of both ligands.


Sign in / Sign up

Export Citation Format

Share Document