scholarly journals Physical Layer Security for Cooperative NOMA Networks via Nakagami-m Fading Channels

Author(s):  
Wided Hadj Alouane

Abstract In this paper, we investigate the physical layer security in cooperative non-orthogonal multiple access (NOMA) networks over Nakagamim fading channels. Both amplify-and-forward (AF) and decode-and-forward (DF) protocols are studied. More particularly, closed-form exact and asymptotic expressions for strictly positive secrecy capacity are provided considering NOMA-AF and NOMA-DF relaying systems. Numerical results are presented to justify the accuracy of the obtained theoretical analysis. These results show that NOMA-AF and NOMA-DF relaying networks have a similar secrecy performance.

2021 ◽  
Author(s):  
Weidong Guo ◽  
Yuxi Liu

Abstract This paper investigates physical layer security analysis of cooperative non-orthogonal multiple access (NOMA) communication system. A virtual full-duplex (VFD) relaying scheme with an untrusted amplify-and-forward (AF) half-duplex (HD) relay and a trusted decode-and-forward (DF) HD relay is used in this system to improve the spectral efficiency. In order to prevent the untrusted relay from eavesdropping, a simple and practical cooperative jamming scheme is designed to confuse the untrusted relay. The exact expressions of effective secrecy throughput (EST) for NOMA users and approximate expression of EST for non-NOMA user are derived. All theoretical results are validated by numerical simulations which demonstrate that the proposed VFD-NOMA scheme is superior to existing HD-NOMA scheme in cooperative system and jamming plays an important role for obtaining acceptable EST. In addition, simulation results shows that the best secrecy performance highly depends on the system parameters such as transmit powers and jamming signal power.


Author(s):  
Weidong Guo ◽  
Yuxi Liu

AbstractThis paper investigates physical layer security analysis of cooperative non-orthogonal multiple access (NOMA) communication system. A virtual full-duplex (VFD) relaying scheme with an untrusted amplify-and-forward (AF) half-duplex (HD) relay and a trusted decode-and-forward (DF) HD relay is used in this system to improve the spectral efficiency. In order to prevent the untrusted relay from eavesdropping, a simple and practical cooperative jamming scheme is designed to confuse the untrusted relay. The exact expressions of effective secrecy throughput (EST) for NOMA users and approximate expression of EST for non-NOMA user are derived. All theoretical results are validated by numerical simulations which demonstrate that the proposed VFD-NOMA scheme is superior to existing HD-NOMA scheme in cooperative system and jamming plays an important role for obtaining acceptable EST. In addition, simulation results shows that the best secrecy performance highly depends on the system parameters such as transmit powers and jamming signal power.


2021 ◽  
Vol 13 (8) ◽  
pp. 205
Author(s):  
Deemah Tashman ◽  
Walaa Hamouda

In this paper, the physical-layer security for a three-node wiretap system model is studied. Under the threat of multiple eavesdroppers, it is presumed that a transmitter is communicating with a legitimate receiver. The channels are assumed to be following cascaded κ-μ fading distributions. In addition, two scenarios for eavesdroppers’ interception and information-processing capabilities are investigated: colluding and non-colluding eavesdroppers. The positions of these eavesdroppers are assumed to be random in the non-colluding eavesdropping scenario, based on a homogeneous Poisson point process (HPPP). The security is examined in terms of the secrecy outage probability, the probability of non-zero secrecy capacity, and the intercept probability. The exact and asymptotic expressions for the secrecy outage probability and the probability of non-zero secrecy capacity are derived. The results demonstrate the effect of the cascade level on security. Additionally, the results indicate that as the number of eavesdroppers rises, the privacy of signals exchanged between legitimate ends deteriorates. Furthermore, in this paper, regarding the capabilities of tapping and processing the information, we provide a comparison between colluding and non-colluding eavesdropping.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 998 ◽  
Author(s):  
Sheng-Hong Lin ◽  
Rong-Rong Lu ◽  
Xian-Tao Fu ◽  
An-Ling Tong ◽  
Jin-Yuan Wang

In this paper, the physical layer security over the M-distributed fading channel is investigated. Initially, an exact expression of secrecy outage probability (SOP) is derived, which has an integral term. To get a closed-form expression, a lower bound of SOP is obtained. After that, the exact expression for the probability of strictly positive secrecy capacity (SPSC) is derived, which is in closed-form. Finally, an exact expression of ergodic secrecy capacity (ESC) is derived, which has two integral terms. To reduce its computational complexity, a closed-from expression for the lower bound of ESC is obtained. As special cases of M-distributed fading channels, the secure performance of the K, exponential, and Gamma-Gamma fading channels are also derived, respectively. Numerical results show that all theoretical results match well with Monte-Carlo simulation results. Specifically, when the average signal-to-noise ratio of main channel is larger than 40 dB, the relative errors for the lower bound of SOP, the probability of SPSC, and the lower bound of ESC are less than 1.936%, 6.753%, and 1.845%, respectively. This indicates that the derived theoretical expressions can be directly used to evaluate system performance without time-consuming simulations. Moreover, the derived results regarding parameters that influence the secrecy performance will enable system designers to quickly determine the optimal available parameter choices when facing different security risks.


2020 ◽  
Vol 10 (2) ◽  
pp. 9-17
Author(s):  
Tuan Nhu Nguyen

Abstract— To secure communication from the sender to the receiver in wireless networks, cryptographic algorithms are usually used to encrypt data at the upper layers of a multi-tiered transmission model. Another emerging trend in the security of data transmitted over wireless networks is the physical layer security based on beamforming and interference fading  communication technology and not using cryptographic algorithms. This trend has attracted increasing concerns from both academia and industry. This paper addresses how physical layer security can protect secret data compare with the traditional cryptographic encryption and which is the better cooperative relaying scheme with the state of the art approached methods in wireless relaying beamforming network.Tóm tắt— Việc bảo mật truyền thông vô tuyến từ nơi gửi đến nơi nhận thường sử dụng các thuật toán mật mã để mã hoá dữ liệu tại các tầng phía trên trong mô hình phân lớp. Một xu hướng khác đang được quan tâm rộng rãi là bảo mật tầng vật lý dựa trên kỹ thuật truyền tin beamforming và kỹ thuật tương tác fading kênh chủ động. Xu hướng này hiện đang được thu hút cả trong giới công nghiệp và nghiên cứu. Đóng góp của bài báo này là làm rõ khả năng bảo mật tầng vật lý và so sách chúng với phương pháp bảo mật dùng kỹ thuật mật mã truyền thống. Bài báo cũng so sánh hai kỹ thuật chuyển tiếp được sử dụng chính trong bảo mật tầng vật lý cho mạng vô tuyến chuyển tiếp là Amplify-and-Forward và Decode-and-Forward.


2021 ◽  
Author(s):  
Wided Hadj Alouane

Abstract In this paper, we investigate physical layer security of multi-relay non-orthogonal multiple access (NOMA) networks with partial relay selection considering decode-and-forward (DF) and amplify-and-forward (AF) protocols. We propose a partial relay scheme aiming to select the best relay based on the highest signal-to-noise-ratio (SNR) of the first link. We derive new exact and asymptotic expressions for strictly positive secrecy capacity (SPSC) and secrecy outage probability (SOP) considering Rayleigh fading channels. Numerical results demonstrate that AF and DF provide almost a similar secrecy performance. Moreover, they prove that partial relay selection improves SPSC and reduces SOP when the relay-cluster is closer to the legitimate receiver.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2942
Author(s):  
Jialun Li ◽  
Shuai Chang ◽  
Xiaomei Fu ◽  
Liang Zhang ◽  
Yishan Su ◽  
...  

Cooperative relaying is an effective technology to improve the capacity of physical-layer security, in which the relay helps forward the received signal to the destination. In this paper, a cooperative compressive sensing and amplify-and-forward (CCS-AF) scheme, which combines the compressive sensing theory and amplify-and-forward strategy, is proposed to increase the secrecy capacity. To optimize the secrecy performance, a coalition formation algorithm based on coalitional game theory of optimal relay selection is proposed to maximize the secrecy capacity. Different to maximizing the individual utility based on the traditional pareto order, the max-coalition order rule is newly defined to guide the coalitional formation. Simulation results indicate that with the proposed algorithm, part of the relays could form a coalition to forward the information and the proposed algorithm could significantly improve the secrecy capacity of cooperative multi-relay networks.


Author(s):  
Long Kong ◽  
Yun Ai ◽  
Lei Lei ◽  
Georges Kaddoum ◽  
Symeon Chatzinotas ◽  
...  

AbstractPhysical layer security (PLS) has been proposed to afford an extra layer of security on top of the conventional cryptographic techniques. Unlike the conventional complexity-based cryptographic techniques at the upper layers, physical layer security exploits the characteristics of wireless channels, e.g., fading, noise, interference, etc., to enhance wireless security. It is proved that secure transmission can benefit from fading channels. Accordingly, numerous researchers have explored what fading can offer for physical layer security, especially the investigation of physical layer security over wiretap fading channels. Therefore, this paper aims at reviewing the existing and ongoing research works on this topic. More specifically, we present a classification of research works in terms of the four categories of fading models: (i) small-scale, (ii) large-scale, (iii) composite, and (iv) cascaded. To elaborate these fading models with a generic and flexible tool, three promising candidates, including the mixture gamma (MG), mixture of Gaussian (MoG), and Fox’s H-function distributions, are comprehensively examined and compared. Their advantages and limitations are further demonstrated via security performance metrics, which are designed as vivid indicators to measure how perfect secrecy is ensured. Two clusters of secrecy metrics, namely (i) secrecy outage probability (SOP), and the lower bound of SOP; and (ii) the probability of nonzero secrecy capacity (PNZ), the intercept probability, average secrecy capacity (ASC), and ergodic secrecy capacity, are displayed and, respectively, deployed in passive and active eavesdropping scenarios. Apart from those, revisiting the secrecy enhancement techniques based on Wyner’s wiretap model, the on-off transmission scheme, jamming approach, antenna selection, and security region are discussed.


Sign in / Sign up

Export Citation Format

Share Document