Sceptic priors and climate consensus

Author(s):  
Grant McDermott

Abstract How much evidence would it take to convince sceptics that they are wrong about climate change? I explore this question within a Bayesian framework. I consider a group of stylised sceptics and examine how these individuals update their beliefs in the face of current and continuing climate change. I find that available evidence in the form of instrumental climate data tends to overwhelm all but the most extreme priors. Most sceptics form up dated beliefs about climate sensitivity that correspond closely to estimates from the scientific literature. However, belief convergence is a non-linear function of prior strength. It thus becomes increasingly difficult to convince the remaining pool of sceptics. I discuss necessary conditions for consensus formation under Bayesian learning and show how apparent deviations from the Bayesian ideal still be accommodated within the same conceptual framework. I argue that a generalized Bayesian model thus provides a bridge between competing theories of climate scepticism as a social phenomenon.

2019 ◽  
Vol 11 (2) ◽  
pp. 717-739 ◽  
Author(s):  
Alexander Gruber ◽  
Tracy Scanlon ◽  
Robin van der Schalie ◽  
Wolfgang Wagner ◽  
Wouter Dorigo

Abstract. The European Space Agency's Climate Change Initiative for Soil Moisture (ESA CCI SM) merging algorithm generates consistent quality-controlled long-term (1978–2018) climate data records for soil moisture, which serves thousands of scientists and data users worldwide. It harmonises and merges soil moisture retrievals from multiple satellites into (i) an active-microwave-based-only product, (ii) a passive-microwave-based-only product and (iii) a combined active–passive product, which are sampled to daily global images on a 0.25∘ regular grid. Since its first release in 2012 the algorithm has undergone substantial improvements which have so far not been thoroughly reported in the scientific literature. This paper fills this gap by reviewing and discussing the science behind the three major ESA CCI SM merging algorithms, versions 2 (https://doi.org/10.5285/3729b3fbbb434930bf65d82f9b00111c; Wagner et al., 2018), 3 (https://doi.org/10.5285/b810601740bd4848b0d7965e6d83d26c; Dorigo et al., 2018) and 4 (https://doi.org/10.5285/dce27a397eaf47e797050c220972ca0e; Dorigo et al., 2019), and provides an outlook on the expected improvements planned for the next algorithm, version 5.


2019 ◽  
Author(s):  
Alexander Gruber ◽  
Tracy Scanlon ◽  
Robin van der Schalie ◽  
Wolfgang Wagner ◽  
Wouter Dorigo

Abstract. The European Space Agency's Climate Change Initiative for Soil Moisture (ESA CCI SM) merging algorithm generates consistent quality-controlled long-term (1978–2018) Climate Data Records for soil moisture which serves thousands of scientists and data users worldwide. It harmonises and merges soil moisture retrievals from multiple satellites into (i) an active-microwave-based only, (ii) a passive-microwave-based only, and a combined active-passive product, which are sampled to daily global images on a 0.25 degree regular grid. Since its first release in 2012 the algorithm has undergone substantial improvements which have so far not been thoroughly reported in the scientific literature. This paper fills this gap by reviewing and discussing the science behind the three major ESA CCI SM merging algorithm versions 2 (https://doi.org/10.5285/3729b3fbbb434930bf65d82f9b00111c; Wagner et al., 2018), 3 (https://doi.org/10.5285/b810601740bd4848b0d7965e6d83d26c; Dorigo et al., 2018a), and 4 (https://doi.org/10.5285/3a8a94c3fa464d68b6d70df291afd457; Dorigo et al., 2018b) and provides an outlook to the expected improvements planned for the next algorithm version 5.


2019 ◽  
Vol 70 (1) ◽  
pp. 62 ◽  
Author(s):  
Scott D. Ling ◽  
Alistair J. Hobday

Adapting to climate change is contingent on an ability to adjust before opportunity is lost. Given that research funding to understand adaptation is limited, rapid return on investment is critical. For Australian marine environments, climate-change impacts are well documented and adaptation opportunities have been identified across aquaculture, fisheries, conservation and tourism sectors. Here, we have evaluated the recent Australian scientific literature to determine (1) the degree to which climate-change impacts and adaptation have been addressed across sectors, and, specifically, (2) the role of a major research program instituted in 2009 to address priority climate-change questions for these sectors, namely, Australia’s ‘National Climate Change Adaptation Research Plan for Marine Biodiversity and Resources’ (MNARP). Although the number of priority questions addressed by the general scientific literature increased in the 2009–2015 period, there was a 92% increase in the number of priority questions addressed during the peak of MNARP (2013–2014). MNARP research also addressed a greater range of priority questions than did the general scientific literature, which showed consistency in the questions and study systems examined. Overall, structured research planning focussed attention on key climate-change questions, which is a critical consideration for enacting adaptation in the face of rapid climate change.


2020 ◽  
Author(s):  
Martin Juckes ◽  
Anna Pirani ◽  
Charlotte Pascoe ◽  
Robin Matthews ◽  
Martina Stockhause ◽  
...  

<p>The Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC) have provided the scientific basis underpinning far reaching policy decisions.The reports also have a huge influence on public debate about climate change. The IPCC is not responsible either for the evaluation of climate data and related emissions and socioeconomic data and scenarios or for the provision of advice on policy (reports must be “neutral, policy-relevant but not policy-prescriptive”). These omissions may appear unreasonable at first sight, but they are part of the well-tested structure which enables the creation of authoritative reports on the complex and sensitive subject of climate change. The responsibility for evaluation of climate data and related emissions and socioeconomic data and scenarios remains with the global scientific community. The IPCC has the task of undertaking an expert, objective assessment of the state of scientific knowledge as expressed in the scientific literature. The exclusion of responsibility for providing policy advice from the IPCC remit allows the IPCC to stay clear of discussions of political priorities. </p><p>These distinctions and limitations influence the way in which the findable, accessible, interoperable, and reusable (FAIR) data principles are applied to the work of the IPCC Assessment. There are hundreds of figures in the IPCC Assessment Reports, showing line graphs, global or regional maps, and many other displays of data and information. These figures are put together by the authors using data resources which are described in the scientific literature that is being assessed. The figures are there to illustrate or clarify points raised in the text of the assessment. Increasingly, the figures also provide quantitative information which is of critical importance for many individuals and organisations which are seeking to exploit IPCC knowledge. </p><p>This presentation will discuss the process of implementing the FAIR data principles within the IPCC assessment process. It will also review both the value of the FAIR principles to the IPCC authors and the IPCC process and the value of the FAIR data products that the process is expected to generate.</p>


2007 ◽  
Vol 31 (5) ◽  
pp. 481-500 ◽  
Author(s):  
Tamsin L. Edwards ◽  
Michel Crucifix ◽  
Sandy P. Harrison

Climate sensitivity is defined as the change in global mean equilibrium temperature after a doubling of atmospheric CO2 concentration and provides a simple measure of global warming. An early estimate of climate sensitivity, 1.5—4.5°C, has changed little subsequently, including the latest assessment by the Intergovernmental Panel on Climate Change. The persistence of such large uncertainties in this simple measure casts doubt on our understanding of the mechanisms of climate change and our ability to predict the response of the climate system to future perturbations. This has motivated continued attempts to constrain the range with climate data, alone or in conjunction with models. The majority of studies use data from the instrumental period (post-1850), but recent work has made use of information about the large climate changes experienced in the geological past. In this review, we first outline approaches that estimate climate sensitivity using instrumental climate observations and then summarize attempts to use the record of climate change on geological timescales. We examine the limitations of these studies and suggest ways in which the power of the palaeoclimate record could be better used to reduce uncertainties in our predictions of climate sensitivity.


2021 ◽  
Vol 44 ◽  
pp. 149-158
Author(s):  
M Chatting ◽  
S Hamza ◽  
J Al-Khayat ◽  
D Smyth ◽  
S Husrevoglu ◽  
...  

Projected climate change is forecasted to have significant effects on biological systems worldwide. Marine turtles in particular may be vulnerable, as the sex of their offspring is determined by their incubating temperature, termed temperature-dependent sex determination. This study aimed to estimate historical, and forecast future, primary sex ratios of hawksbill turtle Eretmochelys imbricata hatchlings at an important nesting ground in northeastern Qatar. Incubation temperatures from the Arabian/Persian Gulf were measured over 2 nesting seasons. Climate data from same period were regressed with nest temperatures to estimate incubation temperatures and hatchling sex ratios for the site from 1993 to 2100. Future hatchling sex ratios were estimated for 2 climate forecasts, one mid-range (SSP245) and one extreme (SSP585). Historical climate data showed female-biased sex ratios of 73.2 ± 12.1% from 1993 to 2017. Female biases from 2018 to 2100 averaged 85.7% ± 6.7% under the mid-range scenario and 87.9% ± 5.4% under the high-range scenario. In addition, predicted female hatchling production was >90% from 2054 and 2052 for SSP245 and SSP585, respectively. These results show that hawksbill primary sex ratios in Qatar are at risk of significant feminization by the year 2100 and that hawksbill turtle incubation temperatures in an extreme, understudied environment are already comparable to those predicted in tropical rookeries during the latter half of the 21st century. These results can help conservationists predict primary sex ratios for hawksbill turtles in the region in the face of 21st-century climate change.


Nature ◽  
2020 ◽  
Vol 580 (7804) ◽  
pp. 456-456 ◽  
Author(s):  
Judy Lawrence ◽  
Marjolijn Haasnoot ◽  
Robert Lempert

2017 ◽  
Author(s):  
Robert E. Keane ◽  
Lisa M. Holsinger ◽  
Mary F. Mahalovich ◽  
Diana F. Tomback

2017 ◽  
Vol 7 (1) ◽  
pp. 6-18 ◽  
Author(s):  
Alejandro Yáñez-Arancibia ◽  
John W. Day

The arid border region that encompasses the American Southwest and the Mexican northwest is an area where the nexus of water scarcity and climate change in the face of growing human demands for water, emerging energy scarcity, and economic change comes into sharp focus.


Sign in / Sign up

Export Citation Format

Share Document