scholarly journals A Combined GIS, Remote Sensing And Geophysical Methods For Groundwater Potential Assessment Of Ilora, Oyo Central, Nigeria

Author(s):  
Olubukola Ogungbade ◽  
Stephen Oluwafemi Ariyo ◽  
Sodiq Abiodun Alimi ◽  
Vincent Cephas Alepa ◽  
Saheed Akinwumi Aromoye ◽  
...  

Abstract This research combined GIS, Remote sensing and geophysical methods for groundwater potential investigation. The study aimed at delineating groundwater potential zones within Ilora, Oyo central, Nigeria. Unavailability of water is a major menace in these area and agricultural activities are suffering as a result. Landsat 8 OLI, ASTER DEM, geological, geophysical, and soil data of the research area were acquired for this study. In order to map groundwater potential of the area, eight thematic layers that influence groundwater occurrences and movement controlling factors such as, geology, elevation, slope, land use land cover (LULC), fault proximity, soil, lineament density, and drainage density were mapped out from the acquired data of the area. The influence of each theme and sub unit/class to groundwater recharge based on previous studies was evaluated using Analytical Hierarchical Process (AHP). The groundwater potential of the area of study was qualitatively classified into five classes, namely; very high, high, moderate, low, and very low which account for 0.3%, 7.8%, 54.8%, 35.6%, and 1.5% of the total area respectively. The results were cross-validated using well data from the area and 89% correlation was achieved. The groundwater potential map generated in this research could be used as a preliminary reference in selecting suitable sites for groundwater resource exploitation in the area in order to ameliorate the current scarcity of water in this region.

2021 ◽  
Vol 77 (4) ◽  
pp. 99-121
Author(s):  
Amel Hibi ◽  
Layachi Gouaidia ◽  
Omar Guefaifia

The present study aims to assess groundwater potential in the Telidjene Basin located in the semi-arid part of eastern Algeria, applying an innovative approach combining both remote sensing and hydrogeophysics methods. A re-interpretation of geophysical data and vertical electrical sounding (VES) measurements were applied and calibrated with the borehole data to map the deep structures that may control the presence of groundwater and identify the geological and hydrogeological setting. Morphometric factors affecting recharge were mapped using several types of remote sensing data (SRTM DEM, Landsat-8). Thematic maps were overlaid using the multicriteria method and GIS to detect potential recharge areas. The results show that the main factors influencing recharge are fracturing and drainage density. Four potential recharge areas were identified over a 547 km2 area of the basin. 20% of the area falls in the weakest class, 32% in the weak class, 3% in the moderate, and 16% in the strongest. Furthermore, the study reveals that an alluvial aquifer with a thickness of up to 60m, spreading over the surface, along the Wadi Telijene and the alluvial soil, is deposited unconformably on Cretaceous terrain containing aquifer horizons of varying thickness and different electrical resistivities (10–150 Ωm), drawing an anticlinal structure with lithostratigraphy interrupted by a series of faults and spurs of Aptian and Triassic age. The south-western part of the basin has a high to moderate recharge and storage capacity. Its alluvial cover is directly fed by precipitation and fractured limestones deposited in a syncline outcropping on the edges forming an alluvial and carbonate bilayer aquifer. This study concluded that an integrated approach, involving recent, efficient, and inexpensive technology, such as remote sensing and conventional geophysical method, can be successfully used to identify groundwater potential in the study area.


2021 ◽  
Vol 14 (12) ◽  
pp. 13-22
Author(s):  
Ajgaonkar Swanand ◽  
S. Manjunatha

Groundwater research has evolved tremendously as presently it is the need of society. Remote Sensing (RS) and Geographical Information System (GIS) are the main methods in finding the potential zones for the groundwater. They help in assessing, exploring, monitoring and conserving groundwater resources. A case study was conducted to find the groundwater potential zones in Lingasugur taluk, Raichur District, Karnataka State, India. Ten thematic maps were prepared for the study area such as geology, hydrogeomorphology, land use/ land cover, soil type, NDVI, NDWI, slope map, lineament density, rainfall and drainage density. A weighted overlay superimposed method was used after converting all the thematic maps in raster format. Thus from analysis, the classes in groundwater potential were made as very good, moderate, poor and very poor zones covering an area of 10.1 sq.km., 169.25 sq.km., 1732.31 sq.km. and 53.66 sq.km. respectively. By taking the present study into consideration, the future plans for urbanization, recharge structures and groundwater exploration sites can be decided.


Author(s):  
Mary Christine Chepchumba ◽  
James M. Raude ◽  
Joseph K. Sang

Integration of Remote Sensing (RS) and the Geographical Information System (GIS) approaches in the field of groundwater resources management is a breakthrough. The RS and GIS geospatial approaches can enhance the assessment, monitoring, and conservation of groundwater resources. In this study, RS and GIS geospatial techniques were applied with the aim of identifying groundwater potential zones in Embu County, Kenya, based on selected multi influencing factors. Lineament layer was obtained by processing Landsat 8 ETM+ image using Principal Component Analysis in ENVI®4.7 and automatic extraction from Principal Component Image using the LINE module in Geomatica software. The resultant groundwater potential map showed that approximately 78% of the total area ranged from ‘high’ to ‘very high’ zones indicating that almost half of the study area has good groundwater potential. About 20% showed moderate potential while only 2% fell under the low potential zone. The proposed study approach can be used as a new way of modeling geospatial data for identification and mapping of groundwater potential zones. The study findings are useful to first-hand information planners and local authorities for assessment, planning, management and administration of groundwater resources in Embu County.


Author(s):  
Ballu Harish ◽  
Mahammad Haseena

<p><strong>Background: </strong>The ground water is the most precious and important resource around the world and is decreasing day by day. In connection, there is a need to bound the potential groundwater zones. The geographical information system (GIS) and remote sensing techniques have become important tools to locate groundwater potential zones.</p><p><strong>Methods</strong>: This research has been carried out to identify ground water potential zones in Nuthankal Mandal with help of GIS and remote sensing techniques. In order to evaluate the ground water potential zones, different thematic maps such as geology, slope, soil, drainage density map, land use and land cover and surface water bodies i.e., lakes and other using remotely-sensed data as well as toposheets and secondary data, collected from concern department. The prepared layers are further used for mapping and identification of ground water potential zones.</p><p><strong>Results</strong>: In this study ground water potential zones are demarked with the help of composite maps, which are generated using GIS tools. The accurate information to obtain the parameters that can be considered for identifying the ground water potential zone such as geology, slope, drainage density and lineament density are generated using the satellite data and survey of India (SOI) Topo-sheets, the groundwater potential zones are classified into five categories like very poor, poor, moderate, good &amp; very good. The use of suggested methodology is demonstrated for a selected study area in Nuthankal Mandal.</p><p><strong>Conclusions</strong>: This groundwater potential information was also used for identification of suitable locations for extraction of water.</p>


2021 ◽  
Vol 6 (2) ◽  
pp. 36-52
Author(s):  
Azarias Woldegebriel ◽  
◽  
Temesgen Amibo ◽  
Abreham Bayu ◽  
◽  
...  

This study focused on delineating the groundwater potential and recharge area for Kaffa Zone by the method of remote sensing and ArcGIS 10.4 software analysis techniques. There are six main influencing factors (rainfall, slope, land use/cover, lineaments, drainage density, and Lithology) selected for groundwater recharge zone mapping. The thematic maps were scanned, geo-referenced, and classified as suitable for groundwater using ArcGIS 10.4. The methods to assess the potential zone were using weight overlay analysis and hierarchy of analytical process algorithm. The result obtained the potential of ground water were discussed recharge zones into four major categories: very good, good, and moderate and low. This can help for better planning and management the potential resource of groundwater. The results analyzed the groundwater potential that were subdivided in to low, moderate, high, and very high groundwater potentials areas that cover 1664.1,7682.9, 958.27, and 192.78 km2 respectively. The prediction accuracy was checked based on the borehole yield observed and predicted data of respective locations within the selected area. The prediction accuracy obtained (68.42%) reflects that the present study's method was produced significantly reliable and precise results.


Author(s):  
E. E. Epuh ◽  
K. A. Sanni ◽  
M. J. Orji

Productivity through groundwater is quite high as compared to surface water, but groundwater resources have not yet been properly exploited. The present study is used to delineate various groundwater potential zones for the assessment of groundwater availability in Lagos metropolis using remote sensing and GIS and hydrogeophysics techniques. Landsat 8, SRTM, geological, soil, and rainfall data were used in the study to prepare various thematic maps, viz., geomorphological, slope, soil, lineament density, rainfall and land use maps. On the basis of relative contribution of each of these maps towards groundwater potential, the weight of each thematic map have been selected and assigned to each map. Hydrogeophysics investigation using Vertical Electric Sounding (VES) was applied to validate the remote sensing and GIS results. All the thematic maps have been registered with one another through ground control points and integrated using the weighted overlay method in GIS for computing groundwater potential index. Based on the methological approach, the ground water potential zones were delineated. The results showed that there are five categories of groundwater potential zones within the study area in which percentage values were contained in each of the categories thereby making major portion of the study area “high” and “moderate” prospect while a few scattered areas have “low” prospect. The very high potential areas are mainly concentrated along the River Alluvium while the “very low” prospect are majorly where there is sand and clay. The best groundwater potential zone is in the southern part due to the presence of fractures, swamp soils which have high infiltration ability and the presence of waterbody which is chiefly accountable for the groundwater recharge in any area. The VES data showed the depth of the aquifer for good water and the polluted aquifer within the study area.


2020 ◽  
Author(s):  
Mirjana Radulović ◽  
Tijana Đorđević ◽  
Nastasija Grujić ◽  
Branislav Pejak ◽  
Sanja Brdar ◽  
...  

&lt;p&gt;Dramatic population growth and climate change lead to an increasing demand for groundwater resources. According to &lt;em&gt;The 2018 edition of the United Nations World Water Development Report&lt;/em&gt;, nearly 6 billion people will face severe water scarcity by 2050. Groundwater represents the world&amp;#8217;s largest available freshwater resource and it is essential for domestic purpose, industrial, and agricultural uses. Therefore, it is very important to identify the potential locations for new groundwater zones development. Here, we utilized geographic information system (GIS) and remote sensing (RS) techniques for the delineation of groundwater potential zones in the Titel Municipality, located in the Autonomous Province of Vojvodina. The groundwater in the study area is affected by elevation difference, agricultural production, and its geographical position. Titel Municipality has a very good agriculture potential that can be only fully exploited by improving groundwater management. Considering that, for the delineation of groundwater potential zones we prepared 6 thematic layers such as geology, geomorphology, land use/land cover, soil, drainage density, and slope. According to their relevant importance in groundwater occurrence, all layers and their features were assigned weights using the Saaty&amp;#8217;s scale. Weights of layers were normalized using analytical hierarchical process techniques (AHP). Finally, layers were integrated and overlaid using QGIS software for generating the Groundwater Potential Zone (GWPZ) map of the study area. As a result, the groundwater potential zones in the Titel Municipality were characterized and classified into five classes as &lt;em&gt;very good&lt;/em&gt; (7.13%), &lt;em&gt;good&lt;/em&gt; (35.44%), &lt;em&gt;moderate&lt;/em&gt; (21.27%), &lt;em&gt;poor&lt;/em&gt; (31.41%) and &lt;em&gt;very poor&lt;/em&gt; (3.11%). With these techniques, we showed that &lt;em&gt;very good&lt;/em&gt; and &lt;em&gt;good&lt;/em&gt; groundwater zones are predominantly located in the alluvial plain and the lower river terrace, while &lt;em&gt;poor&lt;/em&gt; zones mostly evident on the landform of the loess plateau and artificial surface. The GWPZ map will serve as a useful guide for sustainable management and utilization of the region as well as to improve the irrigation facility and develop the agriculture productivity of the area.&lt;/p&gt;


Author(s):  
D. R. Abdullahi ◽  
O. O. Oladosu ◽  
S. A. Samson ◽  
L. O. Abegunde ◽  
T. A. Balogun ◽  
...  

Aim: Employ the use of Remote Sensing and Geographic Information System (GIS) to analyze areas of groundwater potentials in Keffi LGA to meet the rate of water demand. Study Design:  The study is designed to delineate and analyze the drainage characteristics, and map out the groundwater potential zones. Place and Duration of Study: The study is conducted in Keffi LGA of Nassarawa State, Nigeria in 2018. Methodology: Both spatial and non-spatial data were utilized for this research, including Ground Control Points, satellite imageries, and maps. The data generated consisting of the rainfall, NDVI, lineament, geology, slope, and relief were prepared into thematic layers and used for the generation of the drainage morphometric parameters and multi-criteria overlay analysis. Each of the layer used has inputs were ranked based on their relative importance in controlling groundwater potential, and divided into classes using the hydro-geological properties. The groundwater potential analysis reveals four distinct zones representing high, moderate, less and least groundwater potential zones. The delineated groundwater potential map was verified using the available Ground Control Point of boreholes across the study area. Results: The drainage of the study area falls in the 4th order, with the drainage density ranging from 0.2 to 1.6. From the groundwater potential map generated using the rainfall, lineament, geology, drainage density, slope, soil, and NDVI attributes, areas categorized having the moderate groundwater potentials cover about 89.1 km2, while the least cover 0.1 km2 of the study area.  Validating the result with borehole locations across the location shows that the boreholes are dug based on the availability of water following the groundwater potentials, and; 59.8% of the settlement area falls within the moderate groundwater potential classes. Conclusion: The area has adequate capacity for water supply, and only those within the high groundwater potential classes can access groundwater throughout the year.


2020 ◽  
Vol 3 (3) ◽  
pp. 16-27
Author(s):  
Md. Abu Hamjalal Babu ◽  
Md. Risadul Islam ◽  
Fahim Farzana ◽  
Muhammad Jasim Uddin ◽  
Md. Sirajul Islam

Groundwater is the most significant assets on the planet and is declining continuously. The integration of GIS system and remote sensing turned into substantial tools in the field of subsurface water study, which assists in surveying, observing and monitoring the groundwater capitals. With this backdrop, using GIS and remote sensing application, a study was conducted to identify the potential groundwater zones in the hilly district Khagrachhari. The ground water potential zones were identified based on different thematic maps such as drainage, density, lineament density, slope, land use or land cover, soil and geology by using weighted overlay analysis. The groundwater potential zones were investigated orderly into four classes known as poor, moderate, good and very good. This groundwater potential information will work as a guideline to the concerned local authority to identify effectively the suitable locations for the extraction of groundwater.


2019 ◽  
Vol 31 (1) ◽  
pp. 49-64
Author(s):  
Arjun Doke

Abstract Groundwater is one of the most valuable natural resources which is essential for the environmental, biological and socio-economic activities. The present paper aims to delineate groundwater potential of Ulhas basin in India through remote sensing and geographical information system. Several groundwater influencing factors such as geology, geomorphology, slope, landuse, rainfall, lineaments are mapped in GIS environment. Later, these factors were ranked on the basis of their influence on the groundwater potential of a region. After that all these factors were integrated together in GIS environment to prepare the groundwater potential map of Ulhas basin. By implementing influencing factor, it is observed that about 21%, 50% and 29% areas are falling under high, moderate, and low groundwater potential zones, correspondingly. The present study is highly valuable to the policymakers, administrative bodies, engineers for management of groundwater and preparing sustainable water resource plans in Ulhas basin. Additionally, the present paper will help to construct artificial groundwater recharge plan in the study area.


Sign in / Sign up

Export Citation Format

Share Document