Mapping of Groundwater potential zones in Lingasugur Taluk in North-eastern part of Karnataka, India using Remote Sensing, GIS and multi-criteria data analysis

2021 ◽  
Vol 14 (12) ◽  
pp. 13-22
Author(s):  
Ajgaonkar Swanand ◽  
S. Manjunatha

Groundwater research has evolved tremendously as presently it is the need of society. Remote Sensing (RS) and Geographical Information System (GIS) are the main methods in finding the potential zones for the groundwater. They help in assessing, exploring, monitoring and conserving groundwater resources. A case study was conducted to find the groundwater potential zones in Lingasugur taluk, Raichur District, Karnataka State, India. Ten thematic maps were prepared for the study area such as geology, hydrogeomorphology, land use/ land cover, soil type, NDVI, NDWI, slope map, lineament density, rainfall and drainage density. A weighted overlay superimposed method was used after converting all the thematic maps in raster format. Thus from analysis, the classes in groundwater potential were made as very good, moderate, poor and very poor zones covering an area of 10.1 sq.km., 169.25 sq.km., 1732.31 sq.km. and 53.66 sq.km. respectively. By taking the present study into consideration, the future plans for urbanization, recharge structures and groundwater exploration sites can be decided.

Author(s):  
Ballu Harish ◽  
Mahammad Haseena

<p><strong>Background: </strong>The ground water is the most precious and important resource around the world and is decreasing day by day. In connection, there is a need to bound the potential groundwater zones. The geographical information system (GIS) and remote sensing techniques have become important tools to locate groundwater potential zones.</p><p><strong>Methods</strong>: This research has been carried out to identify ground water potential zones in Nuthankal Mandal with help of GIS and remote sensing techniques. In order to evaluate the ground water potential zones, different thematic maps such as geology, slope, soil, drainage density map, land use and land cover and surface water bodies i.e., lakes and other using remotely-sensed data as well as toposheets and secondary data, collected from concern department. The prepared layers are further used for mapping and identification of ground water potential zones.</p><p><strong>Results</strong>: In this study ground water potential zones are demarked with the help of composite maps, which are generated using GIS tools. The accurate information to obtain the parameters that can be considered for identifying the ground water potential zone such as geology, slope, drainage density and lineament density are generated using the satellite data and survey of India (SOI) Topo-sheets, the groundwater potential zones are classified into five categories like very poor, poor, moderate, good &amp; very good. The use of suggested methodology is demonstrated for a selected study area in Nuthankal Mandal.</p><p><strong>Conclusions</strong>: This groundwater potential information was also used for identification of suitable locations for extraction of water.</p>


Author(s):  
E. E. Epuh ◽  
K. A. Sanni ◽  
M. J. Orji

Productivity through groundwater is quite high as compared to surface water, but groundwater resources have not yet been properly exploited. The present study is used to delineate various groundwater potential zones for the assessment of groundwater availability in Lagos metropolis using remote sensing and GIS and hydrogeophysics techniques. Landsat 8, SRTM, geological, soil, and rainfall data were used in the study to prepare various thematic maps, viz., geomorphological, slope, soil, lineament density, rainfall and land use maps. On the basis of relative contribution of each of these maps towards groundwater potential, the weight of each thematic map have been selected and assigned to each map. Hydrogeophysics investigation using Vertical Electric Sounding (VES) was applied to validate the remote sensing and GIS results. All the thematic maps have been registered with one another through ground control points and integrated using the weighted overlay method in GIS for computing groundwater potential index. Based on the methological approach, the ground water potential zones were delineated. The results showed that there are five categories of groundwater potential zones within the study area in which percentage values were contained in each of the categories thereby making major portion of the study area “high” and “moderate” prospect while a few scattered areas have “low” prospect. The very high potential areas are mainly concentrated along the River Alluvium while the “very low” prospect are majorly where there is sand and clay. The best groundwater potential zone is in the southern part due to the presence of fractures, swamp soils which have high infiltration ability and the presence of waterbody which is chiefly accountable for the groundwater recharge in any area. The VES data showed the depth of the aquifer for good water and the polluted aquifer within the study area.


2020 ◽  
Author(s):  
Mirjana Radulović ◽  
Tijana Đorđević ◽  
Nastasija Grujić ◽  
Branislav Pejak ◽  
Sanja Brdar ◽  
...  

&lt;p&gt;Dramatic population growth and climate change lead to an increasing demand for groundwater resources. According to &lt;em&gt;The 2018 edition of the United Nations World Water Development Report&lt;/em&gt;, nearly 6 billion people will face severe water scarcity by 2050. Groundwater represents the world&amp;#8217;s largest available freshwater resource and it is essential for domestic purpose, industrial, and agricultural uses. Therefore, it is very important to identify the potential locations for new groundwater zones development. Here, we utilized geographic information system (GIS) and remote sensing (RS) techniques for the delineation of groundwater potential zones in the Titel Municipality, located in the Autonomous Province of Vojvodina. The groundwater in the study area is affected by elevation difference, agricultural production, and its geographical position. Titel Municipality has a very good agriculture potential that can be only fully exploited by improving groundwater management. Considering that, for the delineation of groundwater potential zones we prepared 6 thematic layers such as geology, geomorphology, land use/land cover, soil, drainage density, and slope. According to their relevant importance in groundwater occurrence, all layers and their features were assigned weights using the Saaty&amp;#8217;s scale. Weights of layers were normalized using analytical hierarchical process techniques (AHP). Finally, layers were integrated and overlaid using QGIS software for generating the Groundwater Potential Zone (GWPZ) map of the study area. As a result, the groundwater potential zones in the Titel Municipality were characterized and classified into five classes as &lt;em&gt;very good&lt;/em&gt; (7.13%), &lt;em&gt;good&lt;/em&gt; (35.44%), &lt;em&gt;moderate&lt;/em&gt; (21.27%), &lt;em&gt;poor&lt;/em&gt; (31.41%) and &lt;em&gt;very poor&lt;/em&gt; (3.11%). With these techniques, we showed that &lt;em&gt;very good&lt;/em&gt; and &lt;em&gt;good&lt;/em&gt; groundwater zones are predominantly located in the alluvial plain and the lower river terrace, while &lt;em&gt;poor&lt;/em&gt; zones mostly evident on the landform of the loess plateau and artificial surface. The GWPZ map will serve as a useful guide for sustainable management and utilization of the region as well as to improve the irrigation facility and develop the agriculture productivity of the area.&lt;/p&gt;


2020 ◽  
Vol 4 (1) ◽  
pp. 57-60
Author(s):  
Zulherry Isnain ◽  
Siti Nadia Abd Ghaffar

The growing demand for groundwater is due to several reasons such as the increment of population, agriculture, pollution, industrialization and urbanization. This study aims to map the groundwater potential zones by using the Geographical Information System (GIS) with remote sensing techniques in the study area. The study area is located at Kg Timbang Dayang and its surrounding at Kota Belud, Sabah. Eight parameters were studied that affect the occurrence of groundwater in the study area. Those parameters are obtained from existing maps, remote sensing imagery and associated databases. The parameters are; lithology, rainfall distribution, drainage density, lineament density, soil types, elevation, slope steepness and landuse. All these parameters will be used to create the thematic maps based on the given weightage values. Finally, all the thematic maps will be integrated to produce the final groundwater potential map of the study area. The groundwater potential map is classified into three categories which are low, moderate and high.


2008 ◽  
Vol 31 (2) ◽  
pp. 31-42
Author(s):  
B. Lubang ◽  
J. Nobert ◽  
E.G. Mtalo

Groundwater is a precious resource that covers wide geographical extent. Proper evaluation is required in order to ensure prudent use of groundwater resources. The current groundwater assessment in Karamoja region, as in many parts of the world, uses Apparent Resistivity and Vertical Electrical Sounding, which has limited coverage to some localized usually predetermined areas. Comprehensive groundwater development program needs a wide area coverage and large volume of multidisciplinary data.In the present study, an integrated remote sensing and GIS based methodology is developed and tested for the evaluation of groundwater resources of Karamoja Sub Region, Northeastern Uganda. The components of the study are delineation of the groundwater potential zones in the area and evaluation of the relationship between delineated groundwater potential zones and aquifer characteristics.The groundwater potential zones are determined by the relevant layers, which include hydro-geomorphology, lineament density, slope, drainage density, overburden thickness and aquifer depth, rainfall, geology, land use, and soil were integrated in Arc/Info grid environment. Weighted index overlay method developed by Multi Criteria Analysis (Analytical Hierarchy Process) was used to assign weights to the different map layers. All the information layers were been integrated through GIS analysis, employing the use of Natural Break (Jenks) method for classification. Alexandru groundwater potential zoning using the Transmissivity values was used for the final classification of the potential zones and correlation with ground-truth data. Over 70% correlation was achieved showing the significance of GIS in groundwater mapping.


2020 ◽  
Vol 3 (3b) ◽  
pp. 99-111
Author(s):  
JS Ejepu

The growing demand for freshwater for domestic and industrial purposes is a current challenge in the Upper Niger River Basin Development Authority area. Consequently, there is heavy demand for groundwater resources to meet this need. This challenge has worsened due to the non-incorporation of integrated methods in groundwater exploration campaigns. Innovative scientific principles and quantitative assessment of groundwater resources are required for sustainable and proper management of the resources. Therefore, the objective of this paper is to exploit the potential application of remote sensing, Geographic Information System (GIS), and Multi-Criteria Decision Analysis (MCDA) techniques in mapping groundwater potential zones. To achieve this, seven factors deemed to have significant control over the occurrence and movement of groundwater viz. geology, lineament density, slope, drainage density, rainfall, land-use/land cover, and soil class were produced. These factors were assigned weights and normalized with respect to their relative contributions to groundwater occurrence using the Analytic Hierarchy Process (AHP). This resulted in groundwater potential zones that have been classified into four: Very good, Good, Moderate and Poor representing 7%, 27%, 43%, and 23% respectively. This result represents groundwater potential in the area and should be used as a preliminary reference in selecting prospective sites for detailed groundwater resource exploitation


2020 ◽  
Vol 13 (1) ◽  
pp. 112
Author(s):  
Hadi Allafta ◽  
Christian Opp ◽  
Suman Patra

Rapid population growth has raised the groundwater resources demand for socio-economic development in the Shatt Al-Arab basin. The sustainable management of groundwater resources requires precise quantitative evaluation, which can be achieved by applying scientific principles and modern techniques. An integrated concept has been used in the current study to identify the groundwater potential zones (GWPZs) in the Shatt Al-Arab basin using remote sensing (RS), geographic information system (GIS), and analytic hierarchy process (AHP). For this purpose, nine groundwater occurrence and movement controlling parameters (i.e., lithology, rainfall, geomorphology, slope, drainage density, soil, land use/land cover, distance to river, and lineament density) were prepared and transformed into raster data using ArcGIS software. These nine parameters (thematic layers) were allocated weights proportional to their importance. Furthermore, the hierarchical ranking was conducted using a pairwise comparison matrix of the AHP in order to estimate the final normalized weights of these layers. We used the overlay weighted sum technique to integrate the layers for the creation of the GWPZs map of the study area. The map has been categorized into five zones (viz., very good, good, moderate, poor, and very poor) representing 4, 51, 35, 9, and 1% of the study area, respectively. Finally, for assessing the effectiveness of the model, the GWPZs map was validated using depth to groundwater data for 99 wells distributed over the basin. The validation results confirm that the applied approach provides significantly solid results that can help in perspective planning and sustainable utilization of the groundwater resources in this water-stressed region.


Author(s):  
Sujit Das ◽  
Soumen Chatterjee

Remote sensing and Geographical Information System (GIS) have played an important role in exploration and management of groundwater resources. In this study, we present modeling of groundwater potential zone in Khoyrasol block in Birbhum district, West Bengal by using remote sensing and GIS techniques. The objective of the study is to explore groundwater as well as surface water availability in different geomorphic units. Different thematic maps of geology, hydro-geomorphology, lineament, slope, land use/land cover (LULC), depth to water level and soil maps are prepared and groundwater potential zones are obtained by overlaying all thematic maps in terms of Weightage Index Overlay (WIO) method. All the thematic map classes have been assigned weightage according to their role in groundwater occurrence. Finally, groundwater potential zones are classified into four categories viz., excellent, good to medium, medium to poor and poor. The outcome of the present research work will help the local farmers, decision-maker, researchers and planners for exploration, monitoring, and management of groundwater resources for this study area.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stanley Ikenna Ifediegwu

AbstractIn the Lafia district, rising population has increased the need for groundwater resources for economic growth. Sustainable groundwater resource management demands accurate quantitative assessment, which may be accomplished using scientific theories and innovative methods. In present study, an integrated method has been employed to assess the groundwater potential zones in the Lafia district utilizing remote sensing (RS), geographic information system (GIS), and analytic hierarchy method (AHP). For this aim, eight thematic maps regulating to occurrence and transportation of groundwater (i.e., geology, rainfall, geomorphology, slope, drainage density, soil, land use/land cover and lineament density) were generated and converted into raster format utilizing ArcGIS tool. Weights were assigned to these eight thematic maps based on their importance. Moreover, the final normalized weights of these parameters were calculated adopting pairwise comparison matrix of the AHP. To create the groundwater potential zones (GWPZs) map of the research area, we employed the overlay weighted sum approach to combine the parameters. The map has been divided into four zones (good, moderate, poor and very poor), each of which represents 19.3, 12.9, 57.8, and 10% of the study area. Lastly, the GWPZs map was validated utilizing borehole data obtained from 50 wells scattered throughout the study area to examine the performance of the approach. The validation results demonstrate that the adopted procedure produces highly reliable results that can aid in long-term development and strategic use of groundwater resources in this area.


Sign in / Sign up

Export Citation Format

Share Document