scholarly journals Teach me to play, gamer! Imitative learning in computer games via linguistic description of complex phenomena and decision trees

Author(s):  
Clemente Rubio-Manzano ◽  
Tomas Lermanda ◽  
Claudia Martinez-Araneda ◽  
Christian Vidal-Castro ◽  
Alejandra Segura-Navarrete

Abstract In this article, we present a new machine learning model by imitation based on the linguistic description of complex phenomena. The idea consists of, first, capturing the behaviour of human players by creating a computational perception network based on the execution traces of the games and, second, representing it using fuzzy logic (linguistic variables and if-then rules). From this knowledge, a set of data (dataset) is automatically created to generate a learning model based on decision trees. This model will be used later to automatically control the movements of a bot. The result is an artificial agent that mimics the human player. We have implemented, tested and evaluated this technology. The results obtained are interesting and promising, showing that this method can be a good alternative to design and implement the behaviour of intelligent agents in video game development.

Author(s):  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin E. Dumitrescu

Abstract Converting existing compression ignition engines to spark ignition approach is a promising approach to increase the application of natural gas in the heavy-duty transportation sector. However, the diesel-like environment dramatically affects the engine performance and emissions. As a result, experimental tests are needed to investigate the characteristics of such converted engines. A machine learning model based on bagged decision trees algorithm was established in this study to reduce the experimental cost and identify the operating conditions of special interest for analysis. Preliminary engine tests that changed spark timing, mixture equivalence ratio, and engine speed (three key engine operation variables) but maintained intake and boundary conditions were applied as model input to train such a correlative model. The model output was the indicated mean effective pressure, which is an engine parameter generally used to assist in locating high engine efficiency regions at constant engine speed and fuel/air ratio. After training, the correlative model can provide acceptable prediction performance except few outliers. Subsequently, boosting ensemble learning approach was applied in this study to help improve the model performance. Furthermore, the results showed that the boosted decision trees algorithm better described the combustion process inside the cylinder, as least for the operating conditions investigated in this study.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Author(s):  
Dhaval Patel ◽  
Shrey Shrivastava ◽  
Wesley Gifford ◽  
Stuart Siegel ◽  
Jayant Kalagnanam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document