scholarly journals Synergic effects of decellularized bone matrix, hydroxyapatite, and extracellular vesicles on repairing of the rabbit mandibular bone defect model

2020 ◽  
Author(s):  
Asrin Emami ◽  
Tahereh Talaei-Khozani ◽  
Saeid Tavanafar ◽  
Nehleh Zareifard ◽  
Negar Azarpira ◽  
...  

Abstract Background: Extracellular vesicles (ECV) and bone extracellular matrix (ECM) have beneficial effects on the treatment of some pathological conditions. The purpose of this study was to find the synergic effects of decellularized bone (DB) ECM and ECVs on the repair of rabbit. Methods: The quality of decellularized sheep bones was confirmed by H&E, Hoechst, DNA quantification, immunohistochemistry, histochemical staining, and scanning electron microscopy (SEM). Osteoblast-derived ECVs were evaluated by internalization test, Transmission electron microscopy, Dynamic light scattering, and flow cytometry for CD9, CD63, CD81 markers. The hydrogel containing DB and hydroxyapatite (HA) with or without ECVs was evaluated for osteoblast functions and bone repair both in vitro and in vivo. Results: The data indicated ECM preservation after decellularization as well as cell depletion. In vitro assessments revealed that mineralization and alkaline phosphatase activity did not improve after treatment of MG63 cells by ECVs, while in vivo morphomatrical estimations showed synergic effects of ECVs and DB+HA hydrogels on increasing the number of bone-specific cells and vessel and bone area compared to the control, DB+HA and ECV-treated groups. Conclusions: The DB enriched with ECVs can be an ideal scaffold for bone tissue engineering and may provide a suitable niche for bone cell migration and differentiation.

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Asrin Emami ◽  
Tahereh Talaei-Khozani ◽  
Saeid Tavanafar ◽  
Nehleh Zareifard ◽  
Negar Azarpira ◽  
...  

Abstract Background Extracellular vesicles (ECV) and bone extracellular matrix (ECM) have beneficial effects on the treatment of some pathological conditions. The purpose of this study was to find the synergic effects of decellularized bone (DB) ECM and ECVs on the repair of rabbit. Methods The quality of decellularized sheep bones was confirmed by H&E, Hoechst, DNA quantification, immunohistochemistry, histochemical staining, and scanning electron microscopy (SEM). Osteoblast-derived ECVs were evaluated by internalization test, Transmission electron microscopy, Dynamic light scattering, and flow cytometry for CD9, CD63, CD81 markers. The hydrogel containing DB and hydroxyapatite (HA) with or without ECVs was evaluated for osteoblast functions and bone repair both in vitro and in vivo. Results The data indicated ECM preservation after decellularization as well as cell depletion. In vitro assessments revealed that mineralization and alkaline phosphatase activity did not improve after treatment of MG63 cells by ECVs, while in vivo morphomatrical estimations showed synergic effects of ECVs and DB + HA hydrogels on increasing the number of bone-specific cells and vessel and bone area compared to the control, DB + HA and ECV-treated groups. Conclusions The DB enriched with ECVs can be an ideal scaffold for bone tissue engineering and may provide a suitable niche for bone cell migration and differentiation.


2020 ◽  
Author(s):  
Asrin Emami ◽  
Tahereh Talaei-Khozani ◽  
Saeid Tavanafar ◽  
Nehleh Zareifard ◽  
Negar Azarpira ◽  
...  

Abstract Background: Extracellular vesicles (ECV) and bone extracellular matrix (ECM) have beneficial effects on the treatment of some pathological conditions. The purpose of this study was to find the synergic effects of decellularized bone (DB) ECM and ECVs on the repair of rabbit. Methods: The quality of decellularized sheep bones was confirmed by H&E, Hoechst, DNA quantification, immunohistochemistry, histochemical staining, and scanning electron microscopy (SEM). Osteoblast-derived ECVs were evaluated by internalization test, Transmission electron microscopy, Dynamic light scattering, and flow cytometry for CD9, CD63, CD81 markers. The hydrogel containing DB and hydroxyapatite (HA) with or without ECVs was evaluated for osteoblast functions and bone repair both in vitro and in vivo. Results: The data indicated ECM preservation after decellularization as well as cell depletion. In vitro assessments revealed that mineralization and alkaline phosphatase activity did not improve after treatment of MG63 cells by ECVs, while in vivo morphomatrical estimations showed synergic effects of ECVs and DB+HA hydrogels on increasing the number of bone-specific cells and vessel and bone area compared to the control, DB+HA and ECV-treated groups. Conclusion: The DB enriched with ECVs can be an ideal scaffold for bone tissue engineering and may provide a suitable niche for bone cell migration and differentiation.


2020 ◽  
Author(s):  
Asrin Emami ◽  
Tahereh Talaei-Khozani ◽  
Saeid Tavanafar ◽  
Nehleh Zareifard ◽  
Negar Azarpira ◽  
...  

Abstract Background Extracellular vesicles (ECV) have beneficial effects on the treatment of some pathological cases such as bone defects. Besides, the bone extracellular matrix (ECM) has been used to restore bone damage. Since major bone defects showed low spontaneous repairing ability, the purpose of this study was to find the synergic effect of decellularized bone (DB) ECM and ECVs on the repair of rabbit z. Methods The quality of decellularized sheep bones was confirmed by H&E, Hoechst, and DNA quantification. Also, immunohistochemistry, histochemical staining, and scanning electron microscopy (SEM) were done to evaluate the retaining of ECM constitutions. Osteoblast-derived ECVs were evaluated by internalization test, Transmission electron microscopy, Dynamic light scattering, and flow cytometry for CD9, CD63, CD81 markers. The hydrogel containing DB and hydroxyapatite (HA) with or without ECVs was evaluated for osteoblast functions and bone repair both in vitro and in vivo. Results SEM, histochemistry, DNA quantification, and immunohistochemistry indicated that the ECM was preserved after decellularization, while the cell and nuclear debris were removed sufficiently. In vitro assessments revealed that mineralization and alkaline phosphatase activity did not improve after treatment of MG63 cells by ECVs, while in vivo assessments showed synergic effects of ECVs and DB+HA hydrogels compared to the control, DB+HA and ECV-treated groups. Morphometric estimations revealed that the number of the bone-specific cells and vessel and bone area increased in bone defect treated with DB+HA/ECVs. Conclusion The DB enriched with ECVs can be an ideal scaffold for bone tissue engineering and may provide a suitable niche for migration and differentiation of the bone cells.


2020 ◽  
Vol 25 (1) ◽  
pp. 265-273
Author(s):  
Kristian Kniha ◽  
Eva Miriam Buhl ◽  
Benita Hermanns-Sachweh ◽  
Faruk Al-Sibai ◽  
Anna Bock ◽  
...  

Abstract Objectives The purpose of this pilot porcine cadaver study was to evaluate the feasible temperature thresholds, which affect osteocyte viability and bone matrix in a preclinical setup, assessing the potential of thermal necrosis for implant removal for further in vivo investigations. Materials and methods After implant bed preparation in the upper and lower jaw, temperature effects on the bone were determined, using two tempering pistons with integrated thermocouples. To evaluate threshold temperature and time intervals leading to bone necrosis, one piston generated warm temperatures at 49 to 56 °C for 10 s and the other generated cold temperatures at 5 to 1 °C for 30 s. Effects were assessed by a semi-quantitative, histomorphometrical scoring system, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). Results The bone matrix was significantly degenerated starting at 51 °C for 10 s and 5 °C for 30 s. The osteocyte condition indicated significant bone damage beginning at cold temperatures of 2 °C. Temperature inputs starting at 53 °C led to decalcification and swollen mitochondria, which lost the structure of their inner cristae. Conclusions This study identified temperatures and durations, in both heat and cold, so that the number of samples may be kept low in further studies regarding temperature-induced bone necrosis. Levels of 51 °C for 10 s and 5 °C for 30 s have presented significant matrix degeneration. Clinical relevance Temperature thresholds, potentially leading to thermo-explantation of dental implants and other osseointegrated devices, were identified.


2008 ◽  
Vol 396-398 ◽  
pp. 671-674
Author(s):  
Viviane Gomide ◽  
Natália Ocarino ◽  
Rogéria Serakides ◽  
Maria de Fatima Leite ◽  
Marivalda Pereira

Bioactive glass/polymer hybrids are promising materials for biomedical applications because they combine the bioactivity of these bioceramics with the flexibility of polymers. In previous work hybrid foams with 50% bioactive glass and 50% polyvinyl alcohol (PVA) were prepared by the sol-gel process for application as scaffold for bone tissue engineering. In this work the hybrid samples were tested in osteoblast culture to evaluate adhesion and proliferation. Samples were also implanted subcutaneously in the dorsal region of adult rats. The hybrid 50% PVA/bioactive glass foam was chosen as the best scaffold in the composition range studied and it is a promising material for bone repair, providing a good environment for the adhesion and proliferation of osteoblasts in vitro. Concerning the in vivo studies we can assure that the “foreing body” reaction was moderate and that the presence of osteoid indicated bone matrix formation.


1998 ◽  
Vol 550 ◽  
Author(s):  
Kacey G. Marra ◽  
Phil G. Campbell ◽  
Paul A. Dimilla ◽  
Prashant N. Kumta ◽  
Mark P. Mooney ◽  
...  

AbstractWe have constructed osteogenic scaffolds using solid freeform fabrication techniques. Blends of biodegradable polymers, polycaprolactone and poly(D,L-lactic-co-glycolic acid), have been examined as scaffolds for applications in bone tissue engineering. Hydroxyapatite granules were incorporated into the blends and porous discs were prepared. Mechanical properties and degradation rates of the composites were determined. The discs were seeded with rabbit bone marrow or cultured bone marrow stromal cells and in vitro studies were conducted. Electron microscopy and histological analysis revealed an osteogenic composite that supports bone cell growth not only on the surface but throughout the 1 mm thick scaffold as well. Seeded and unseeded discs were mechanically assembled in layers and implanted in a rabbit rectus abdominis muscle. Bone growth was evident after eight weeks in vivo. Electron microscopy and histological analyses indicate vascularization and primitive bone formation throughout the seeded composite, and also a “fusion” of the layers to form a single, solid construct. Finally, we have begun to incorporate the growth factor IGF-I into the scaffold to enhance osteogenicity and/or as an alternative to cell seeding.


Author(s):  
Amber Rath Bonivtch ◽  
Lynda F. Bonewald ◽  
Daniel P. Nicolella

It is well known that bone adapts to changes in its mechanical environment and that this adaptation is controlled at the cellular level through the coordinated actions of osteoblasts, osteocytes, and osteoclasts. Osteocytes make up over 90% of all bone cells [1], and are hypothesized to be the mechanosensors in bone [2] that mediate the effects of bone loading through their extensive communication network. The application of force to the skeletal system produces several potential stimuli for osteocyte function including hydrostatic pressure, fluid flow-induced shear stress, and bone tissue strain. Previously, the basis used for studying the stimulatory effects of mechanical strain on bone cell biological responses in vitro has been the direct measurement of bone strain in humans during various physical activities [3,4]. The limitation of applying this strain magnitude data to cells in vitro, however, is that the in vivo strain gage measurements represent continuum measures of bone deformation. Clearly, at the spatial level of bone cells, cortical bone is not a continuum and microstructural inhomogeneities will result in inhomogeneous microstructural strain fields; local tissue strains will be magnified in association with microstructural features [5,6]. It is unclear as to how much of these magnified strains will be directly transmitted to the osteocyte itself. Additionally, if the osteocyte has the ability to alter its perilacunar environment [7], it is unknown what effect do these changes have on the strain that is transmitted to the osteocyte and cell process.


2020 ◽  
Vol 7 (4) ◽  
pp. 191830 ◽  
Author(s):  
WeiKang Zhao ◽  
Yuling Li ◽  
Ao Zhou ◽  
Xiaojun Chen ◽  
Kai Li ◽  
...  

Self-assembled peptide scaffolds based on D-RADA16 are an important matrix for controlled drug release and three-dimensional cell culture. In this work, D-RADA16 peptide hydrogels were coated on artificial bone composed of nano-hydroxyapatite/polyamide 66 (nHA/PA66) to obtain a porous drug-releasing structure for treating bone defects. The developed materials were characterized via transmission electron microscopy and scanning electron microscopy. The proliferation and adhesion of bone mesenchymal stem cells (BMSCs) were examined by confocal laser microscopy and CCK-8 experiments. The osteogenic ability of the porous materials towards bone BMSCs was examined in vitro by staining with Alizarin Red S and alkaline phosphatase, and bioactivity was evaluated in vivo . The results revealed that nHA/PA66/D-RADA16/bFGF reduces the degradation rate of D-RADA16 hydrogels and prolongs sustained release of bFGF, which would promote BMSCs proliferation, adhesion and osteogenesis in vitro and bone repair in vivo . Thus, it deserves more attention and is worthy of further research.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 991 ◽  
Author(s):  
Dimitrios Tsiapalis ◽  
Lorraine O’Driscoll

Mesenchymal stem cells (MSCs) are being extensively investigated for their potential in tissue engineering and regenerative medicine. However, recent evidence suggests that the beneficial effects of MSCs may be manifest by their released extracellular vesicles (EVs); typically not requiring the administration of MSCs. This evidence, predominantly from pre-clinical in vitro and in vivo studies, suggests that MSC-EVs may exhibit substantial therapeutic properties in many pathophysiological conditions, potentially restoring an extensive range of damaged or diseased tissues and organs. These benefits of MSC EVs are apparently found, regardless of the anatomical or body fluid origin of the MSCs (and include e.g., bone marrow, adipose tissue, umbilical cord, urine, etc). Furthermore, early indications suggest that the favourable effects of MSC-EVs could be further enhanced by modifying the way in which the donor MSCs are cultured (for example, in hypoxic compared to normoxic conditions, in 3D compared to 2D culture formats) and/or if the EVs are subsequently bio-engineered (for example, loaded with specific cargo). So far, few human clinical trials of MSC-EVs have been conducted and questions remain unanswered on whether the heterogeneous population of EVs is beneficial or some specific sub-populations, how best we can culture and scale-up MSC-EV production and isolation for clinical utility, and in what format they should be administered. However, as reviewed here, there is now substantial evidence supporting the use of MSC-EVs in tissue engineering and regenerative medicine and further research to establish how best to exploit this approach for societal and economic benefit is warranted.


Sign in / Sign up

Export Citation Format

Share Document