scholarly journals Development of Highly Validated SNP Markers for Genetics Analyses of Chestnut Species.

Author(s):  
Clement LARUE ◽  
Erwan Guichoux ◽  
Benoît Laurent ◽  
Teresa Barreneche ◽  
Cécile Robin ◽  
...  

Abstract To better study and manage chestnut trees and species, we identified nuclear single nucleotide polymorphism (SNP) markers using restriction-associated DNA sequencing. Out of 343 loci tested, 68 SNP markers were selected that withhold stringent quality criteria such as quasi-systematic amplification across species and Mendelian segregation in both purebred and hybrid individuals. They provide sufficient power for species, hybrids and backcross characterization as well as for clonal identification, as shown by a comparison with single sequenced repeat (SSR) loci.

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1081E-1082
Author(s):  
Brian W. Trader ◽  
Richard E. Veilleux ◽  
Holly L. Scoggins

The genus Astilbe (Saxifragaceae) comprises about 13 species and is ranked consistently among the top 10 landscape perennials. Through extensive hybridization, selection and marketing, the lineage of many Astilbehas been lost. Subdioecious Astilbebiternatais the only species in the genus native to North America while other members of the genus are endemic to Asia and monoecious. Due to the unusual geographic distribution of the species and the variation in floral development among them, development of genetic markers using single nucleotide polymorphisms (SNPs) would confirm phylogenetic relationships and establish lineage within the genus. Astilbespecies, hybrids, and cultivars were obtained from plant nurseries and botanical gardens across the country. To elucidate relationships among the genus, we conducted phylogenetic analysis of DNA sequences of the chloroplast gene matKand the internal transcriber spacer (ITS) of ribosomal rDNA genes. DNA was extracted, and gene primers trnK3914 and trnK2R were used to amplify matK, and primers 1406F and ITS2 were used to amplify the ITS1 region between 18S and 5.8S ribosomal DNA units. Both matKand ITS were sequenced for each plant specimen and sequences were aligned to identify nucleotide diversity and detect SNPs. Variation in nucleotide sequence for either gene yielded similar dendrograms. Nucleotide variation among the Astilbeutilized in this study has allowed the development of SNP markers that may be useful for fingerprinting unknown hybrids or cultivars in the industry, and may be used for species alignment within the genus.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 705
Author(s):  
John Carlos I. Ignacio ◽  
Maricris Zaidem ◽  
Carlos Casal ◽  
Shalabh Dixit ◽  
Tobias Kretzschmar ◽  
...  

Direct seeded rice (DSR) is a mainstay for planting rice in the Americas, and it is rapidly becoming more popular in Asia. It is essential to develop rice varieties that are suitable for this type of production system. ASD1, a landrace from India, possesses several traits desirable for direct-seeded fields, including tolerance to anaerobic germination (AG). To map the genetic basis of its tolerance, we examined a population of 200 F2:3 families derived from a cross between IR64 and ASD1 using the restriction site-associated DNA sequencing (RAD-seq) technology. This genotyping platform enabled the identification of 1921 single nucleotide polymorphism (SNP) markers to construct a high-resolution genetic linkage map with an average interval of 0.9 cM. Two significant quantitative trait loci (QTLs) were detected on chromosomes 7 and 9, qAG7 and qAG9, with LOD scores of 7.1 and 15.0 and R2 values of 15.1 and 29.4, respectively. Here, we obtained more precise locations of the QTLs than traditional simple sequence repeat and low-density SNP genotyping methods and may help further dissect the genetic factors of these QTLs.


2021 ◽  
Vol 19 (1) ◽  
pp. 20-28
Author(s):  
Abush Tesfaye Abebe ◽  
Adesike Oladoyin Kolawole ◽  
Nnanna Unachukwu ◽  
Godfree Chigeza ◽  
Hailu Tefera ◽  
...  

AbstractSoybean (Glycine max (L.) Merr.) is an important legume crop with high commercial value widely cultivated globally. Thus, the genetic characterization of the existing soybean germplasm will provide useful information for enhanced conservation, improvement and future utilization. This study aimed to assess the extent of genetic diversity of soybean elite breeding lines and varieties developed by the soybean breeding programme of the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. The genetic diversity of 65 soybean genotypes was studied using single-nucleotide polymorphism (SNP) markers. The result revealed that 2446 alleles were detected, and the indicators for allelic richness and diversity had good differentiating power in assessing the diversity of the genotypes. The three complementary approaches used in the study grouped the germplasm into three major clusters based on genetic relatedness. The analysis of molecular variance revealed that 71% (P < 0.001) variation was due to among individual genotypes, while 11% (P < 0.001) was ascribed to differences among the three clusters, and the fixation index (FST) was 0.11 for the SNP loci, signifying moderate genetic differentiation among the genotypes. The identified private alleles indicate that the soybean germplasm contains diverse variability that is yet to be exploited. The SNP markers revealed high diversity in the studied germplasm and found to be efficient for assessing genetic diversity in the crop. These results provide valuable information that might be utilized for assessing the genetic variability of soybean and other legume crops germplasm by breeding programmes.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Weifan Gao ◽  
Sukumar Saha ◽  
Din-Pow Ma ◽  
Yufang Guo ◽  
Johnie N. Jenkins ◽  
...  

A cotton fiber cDNA and its genomic sequences encoding an A-type cyclin-dependent kinase (GhCDKA) were cloned and characterized. The encoded GhCDKA protein contains the conserved cyclin-binding, ATP binding, and catalytic domains. Northern blot and RT-PCR analysis revealed that the GhCDKA transcript was high in 5–10 DPA fibers, moderate in 15 and 20 DPA fibers and roots, and low in flowers and leaves. GhCDKA protein levels in fibers increased from 5–15 DPA, peaked at 15 DPA, and decreased from 15 t0 20 DPA. The differential expression of GhCDKA suggested that the gene might play an important role in fiber development. The GhCDKA sequence data was used to develop single nucleotide polymorphism (SNP) markers specific for the CDKA gene in cotton. A primer specific to one of the SNPs was used to locate the CDKA gene to chromosome 16 by deletion analysis using a series of hypoaneuploid interspecific hybrids.


2020 ◽  
Vol 145 (2) ◽  
pp. 104-109
Author(s):  
Hsuan Chen ◽  
Jason D. Lattier ◽  
Kelly Vining ◽  
Ryan N. Contreras

Lilacs (Syringa sp.) have been used as ornamental plants since the mid-16th century and remain important in modern gardens due to their attractive and fragrant flowers. However, a short flowering season is a critical drawback for their ornamental value. Breeders have identified remontancy (reblooming) in dwarf lilac (Syringa pubescens), and have tried to introgress this trait into related species by interspecific hybridization. Molecular tools for lilac breeding are limited because of the shortage of genome sequence knowledge and currently no molecular markers are available to use in breeding for remontancy. In this study, an F1 population from crossing Syringa meyeri ‘Palibin’ × S. pubescens ‘Penda’ Bloomerang® Purple was created and subjected to genotyping-by-sequencing (GBS) analysis and phenotyped for remontancy. Plants were categorized as remontant, semi-remontant, and nonremontant based on the relative quantity of inflorescences during the second flush of flowers. A total of 20,730 single-nucleotide polymorphism (SNP) markers from GBS were used in marker-trait association to find remontant-specific marker(s) without marker position information. Two SNP markers, TP70580 (A locus) and TP82604 (B locus), were correlated with remontancy. The two loci showed a partial epistasis and additive interaction effects on the level of remontancy. Accumulation of recessive alleles at the two loci was positively correlated with increased reblooming. For example, 87% of aabb plants were remontant, and only 9% were nonremontant. In contrast, 100% of AaBB plants were nonremontant. These two SNP markers associated with remontancy will be useful in developing markers for future breeding and demonstrate the feasibility of developing markers for breeding woody ornamental taxa that lack a reference genome or extensive DNA sequence information.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2025
Author(s):  
Shyryn Almerekova ◽  
Yuliya Genievskaya ◽  
Saule Abugalieva ◽  
Kazuhiro Sato ◽  
Yerlan Turuspekov

The genetic relationship and population structure of two-rowed barley accessions from Kazakhstan were assessed using single-nucleotide polymorphism (SNP) markers. Two different approaches were employed in the analysis: (1) the accessions from Kazakhstan were compared with barley samples from six different regions around the world using 1955 polymorphic SNPs, and (2) 94 accessions collected from six breeding programs from Kazakhstan were studied using 5636 polymorphic SNPs using a 9K Illumina Infinium assay. In the first approach, the neighbor-joining tree showed that the majority of the accessions from Kazakhstan were grouped in a separate subcluster with a common ancestral node; there was a sister subcluster that comprised mainly barley samples that originated in Europe. The Pearson’s correlation analysis suggested that Kazakh accessions were genetically close to samples from Africa and Europe. In the second approach, the application of the STRUCTURE package using 5636 polymorphic SNPs suggested that Kazakh barley samples consisted of five subclusters in three major clusters. The principal coordinate analysis plot showed that, among six breeding origins in Kazakhstan, the Krasnovodopad (KV) and Karaganda (KA) samples were the most distant groups. The assessment of the pedigrees in the KV and KA samples showed that the hybridization schemes in these breeding stations heavily used accessions from Ethiopia and Ukraine, respectively. The comparative analysis of the KV and KA samples allowed us to identify 214 SNPs with opposite allele frequencies that were tightly linked to 60 genes/gene blocks associated with plant adaptation traits, such as the heading date and plant height. The identified SNP markers can be efficiently used in studies of barley adaptation and deployed in breeding projects to develop new competitive cultivars.


Euphytica ◽  
2010 ◽  
Vol 175 (1) ◽  
pp. 91-107 ◽  
Author(s):  
Jin-kee Jung ◽  
Soung-Woo Park ◽  
Wing Yee Liu ◽  
Byoung-Cheorl Kang

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mochamad Syaifudin ◽  
Michaël Bekaert ◽  
John B. Taggart ◽  
Kerry L. Bartie ◽  
Stefanie Wehner ◽  
...  

Abstract Tilapias (family Cichlidae) are of importance in aquaculture and fisheries. Hybridisation and introgression are common within tilapia genera but are difficult to analyse due to limited numbers of species-specific genetic markers. We tested the potential of double digested restriction-site associated DNA (ddRAD) sequencing for discovering single nucleotide polymorphism (SNP) markers to distinguish between 10 tilapia species. Analysis of ddRAD data revealed 1,371 shared SNPs in the de novo-based analysis and 1,204 SNPs in the reference-based analysis. Phylogenetic trees based on these two analyses were very similar. A total of 57 species-specific SNP markers were found among the samples analysed of the 10 tilapia species. Another set of 62 species-specific SNP markers was identified from a subset of four species which have often been involved in hybridisation in aquaculture: 13 for Oreochromis niloticus, 23 for O. aureus, 12 for O. mossambicus and 14 for O. u. hornorum. A panel of 24 SNPs was selected to distinguish among these four species and validated using 91 individuals. Larger numbers of SNP markers were found that could distinguish between the pairs of species within this subset. This technique offers potential for the investigation of hybridisation and introgression among tilapia species in aquaculture and in wild populations.


Sign in / Sign up

Export Citation Format

Share Document