scholarly journals Rsp Activates Expression of the Cnt System in Staphylococcus aureus

2020 ◽  
Author(s):  
Laura Vinué ◽  
David C. Hooper

Abstract Background The Cnt system is crucial for the optimal import of essential metals in metal-limiting conditions and contributes to virulence in S. aureus. In a screen for regulators of efflux pumps and other exporters in a phage-based ultra-high-density transposon library, we identified Rsp as a candidate regulator of the cntE exporter gene. Results A two-fold decrease in expression of all genes of the cnt operon was observed by RT-qPCR in the rsp mutant compared to the parental strain, indicating that Rsp acts as an activator of the cnt operon. To determine whether the Rsp activation depends on iron, we compared mutant and parent cnt expression under varying metal conditions. A 2-fold reduction in cnt gene expression was detected in the rsp mutant in TSB, and a slightly smaller decrease (1.9, 1.7, and 1.5-fold changes for cntK, cmtA, and cntE respectively) was observed after addition of dipyridyl. The greatest decrease was seen with addition of FeSO4 (4.1, 5.3 and 6.3-fold changes for cntK, cmtA and cntE respectively). These findings suggest that Rsp activates the cnt operon in both low and high iron conditions. To study the relationship between Rsp and the cnt repressors Fur and Zur, we created single and double mutants. A decrease in the expression of cntK (1.5-fold) and cntA (1.6-fold) was seen for Δfur Δrsp compared to Δfur strain. Similarly decreased expression of cntK (1.3-fold), cntA (1.6-fold) and cntE (1.6-fold) genes was seen comparing Δzur Δrsp and Δzur mutants but statistically not significant, indicating that Rsp is dependent on Fur and Zur. To determine if Rsp directly modulates expression of cnt genes, incubation of purified Rsp caused a DNA-specific band shift for both the cntK and cntA promoters. Conclusions Rsp activation may act to maintain basal cellular levels of staphylopine to scavenge free metals when needed, in addition to metal dependent regulation by Fur and Zur.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Laura Vinué ◽  
David C. Hooper

Abstract Background The Cnt system is crucial for the optimal import of essential metals in metal-limiting conditions and contributes to virulence in S. aureus. In a screen for regulators of efflux pumps in a phage-based ultra-high-density transposon library, we identified Rsp as a candidate regulator of the cntE gene. Results A two-fold decrease in expression of all genes of the cnt operon was observed by RT-qPCR in the rsp mutant compared to the parental strain, indicating that Rsp acts as an activator of the cnt operon. To determine whether the Rsp activation depends on iron, we compared mutant and parent cnt expression under varying metal conditions. A 2-fold reduction in cnt gene expression was detected in the rsp mutant in TSB, and a slightly smaller decrease (1.9, 1.7, and 1.5-fold changes for cntK, cmtA, and cntE respectively) was observed after addition of dipyridyl. The greatest decrease was seen with addition of FeSO4 (4.1, 5.3 and 6.3-fold changes for cntK, cmtA and cntE respectively). These findings suggest that Rsp activates the cnt operon in low and high iron conditions. To study the relationship between Rsp and the cnt repressors Fur and Zur, we created single and double mutants. Both fur and zur single mutants had significant increases in cnt gene expression compared to the parental strain, as did the fur rsp double mutant. The zur rsp double mutant also had a significant increase in cntK expression and a trend in increases in cntA and cntE expression just below statistical significance. Thus, the ability of Fur and Zur to repress cnt gene expression are not eliminated by the presence of Rsp. However, there were significantly smaller increases in cnt gene expression in the double mutants compared to single mutants, suggesting that Rsp activation can still occur in the absence of these repressors. To determine if Rsp directly modulates expression of cnt genes, incubation of purified Rsp caused a DNA-specific band shift for the cntK and cntA promoters. Conclusions Rsp activation may act to maintain basal cellular levels of staphylopine to scavenge free metals when needed, in addition to metal dependent regulation by Fur and Zur.


2020 ◽  
Author(s):  
Laura Vinué ◽  
David C. Hooper

Abstract Background: The Cnt system is crucial for the optimal import of essential metals in metal-limiting conditions and contributes to virulence in S. aureus. In a screen for regulators of efflux pumps in a phage-based ultra-high-density transposon library, we identified Rsp as a candidate regulator of the cntE gene. Results: A two-fold decrease in expression of all genes of the cnt operon was observed by RT-qPCR in the rsp mutant compared to the parental strain, indicating that Rsp acts as an activator of the cnt operon. To determine whether the Rsp activation depends on iron, we compared mutant and parent cnt expression under varying metal conditions. A 2-fold reduction in cnt gene expression was detected in the rsp mutant in TSB, and a slightly smaller decrease (1.9, 1.7, and 1.5-fold changes for cntK, cmtA, and cntE respectively) was observed after addition of dipyridyl. The greatest decrease was seen with addition of FeSO4 (4.1, 5.3 and 6.3-fold changes for cntK, cmtA and cntE respectively). These findings suggest that Rsp activates the cnt operon in low and high iron conditions. To study the relationship between Rsp and the cnt repressors Fur and Zur, we created single and double mutants. Both fur and zur single mutants had significant increases in cnt gene expression compared to the parental strain, as did the fur rsp double mutant. The zur rsp double mutant also had a significant increase in cntK expression and a trend in increases in cntA and cntE expression just below statistical significance. Thus, the ability of Fur and Zur to repress cnt gene expression are not eliminated by the presence of Rsp. However, there were significantly smaller increases in cnt gene expression in the double mutants compared to single mutants, suggesting that Rsp activation can still occur in the absence of these repressors. To determine if Rsp directly modulates expression of cnt genes, incubation of purified Rsp caused a DNA-specific band shift for the cntK and cntA promoters. Conclusions: Rsp activation may act to maintain basal cellular levels of staphylopine to scavenge free metals when needed, in addition to metal dependent regulation by Fur and Zur.


2020 ◽  
Author(s):  
Laura Vinué ◽  
David C. Hooper

Abstract Background: The Cnt system is crucial for the optimal import of essential metals in metal-limiting conditions and contributes to virulence in S. aureus. In a screen for regulators of efflux pumps in a phage-based ultra-high-density transposon library, we identified Rsp as a candidate regulator of the cntE gene. Results: A two-fold decrease in expression of all genes of the cnt operon was observed by RT-qPCR in the rsp mutant compared to the parental strain, indicating that Rsp acts as an activator of the cnt operon. To determine whether the Rsp activation depends on iron, we compared mutant and parent cnt expression under varying metal conditions. A 2-fold reduction in cnt gene expression was detected in the rsp mutant in TSB, and a slightly smaller decrease (1.9, 1.7, and 1.5-fold changes for cntK, cmtA, and cntE respectively) was observed after addition of dipyridyl. The greatest decrease was seen with addition of FeSO4 (4.1, 5.3 and 6.3-fold changes for cntK, cmtA and cntE respectively). These findings suggest that Rsp activates the cnt operon in low and high iron conditions. To study the relationship between Rsp and the cnt repressors Fur and Zur, we created single and double mutants. Both fur and zur single mutants had significant increases in cnt gene expression compared to the parental strain, as did the fur rsp double mutant. The zur rsp double mutant also had a significant increase in cntK expression and a trend in increases in cntA and cntE expression just below statistical significance. Thus, the ability of Fur and Zur to repress cnt gene expression are not eliminated by the presence of Rsp. However, there were significantly smaller increases in cnt gene expression in the double mutants compared to single mutants, suggesting that Rsp activation can still occur in the absence of these repressors. To determine if Rsp directly modulates expression of cnt genes, incubation of purified Rsp caused a DNA-specific band shift for the cntK and cntA promoters. Conclusions: Rsp activation may act to maintain basal cellular levels of staphylopine to scavenge free metals when needed, in addition to metal dependent regulation by Fur and Zur.


2020 ◽  
Author(s):  
Laura Vinué ◽  
David C. Hooper

Abstract Background: The Cnt system is crucial for the optimal import of essential metals in metal-limiting conditions and contributes to virulence in S. aureus. In a screen for regulators of efflux pumps in a phage-based ultra-high-density transposon library, we identified Rsp as a candidate regulator of the cntE gene. Results: A two-fold decrease in expression of all genes of the cnt operon was observed by RT-qPCR in the rsp mutant compared to the parental strain, indicating that Rsp acts as an activator of the cnt operon. To determine whether the Rsp activation depends on iron, we compared mutant and parent cnt expression under varying metal conditions. A 2-fold reduction in cnt gene expression was detected in the rsp mutant in TSB, and a slightly smaller decrease (1.9, 1.7, and 1.5-fold changes for cntK, cmtA, and cntE respectively) was observed after addition of dipyridyl. The greatest decrease was seen with addition of FeSO4 (4.1, 5.3 and 6.3-fold changes for cntK, cmtA and cntE respectively). These findings suggest that Rsp activates the cnt operon in low and high iron conditions. To study the relationship between Rsp and the cnt repressors Fur and Zur, we created single and double mutants. Both fur and zur single mutants had significant increases in cnt gene expression compared to the parental strain, as did the fur rsp double mutant. The zur rsp double mutant also had a significant increase in cntK expression and a trend in increases in cntA and cntE expression just below statistical significance. Thus, the ability of Fur and Zur to repress cnt gene expression are not eliminated by the presence of Rsp. However, there were significantly smaller increases in cnt gene expression in the double mutants compared to single mutants, suggesting that Rsp activation can still occur in the absence of these repressors. To determine if Rsp directly modulates expression of cnt genes, incubation of purified Rsp caused a DNA-specific band shift for the cntK and cntA promoters. Conclusions: Rsp activation may act to maintain basal cellular levels of staphylopine to scavenge free metals when needed, in addition to metal dependent regulation by Fur and Zur.


2020 ◽  
Author(s):  
Laura Vinué ◽  
David C. Hooper

Abstract Background: The Cnt system is crucial for the optimal import of essential metals in metal-limiting conditions and contributes to virulence in S. aureus. In a screen for regulators of efflux pumps in a phage-based ultra-high-density transposon library, we identified Rsp as a candidate regulator of the cntE gene. Results: A twofold decrease in expression of all genes of the cnt operon was observed by RT-qPCR in the rsp mutant compared to the parental strain, indicating that Rsp acts as an activator of the cnt operon. To determine whether the Rsp activation depends on iron, we compared mutant and parent cnt expression under varying metal conditions. A 2-fold reduction in cnt gene expression was detected in the rsp mutant in TSB, and a slightly smaller decrease (1.9, 1.7, and 1.5-fold changes for cntK, cmtA, and cntE respectively) was observed after addition of dipyridyl. The greatest decrease was seen with addition of FeSO4 (4.1, 5.3 and 6.3-fold changes for cntK, cmtA and cntE respectively). These findings suggest that Rsp activates the cnt operon in low and high iron conditions. To study the relationship between Rsp and the cnt repressors Fur and Zur, we created single and double mutants. Both fur and zur single mutants had significant increases in cnt gene expression compared to the parental strain, as did the fur rsp double mutant. The zur rsp double mutant also had a significant increase in cntK expression and a trend in increases in cntA and cntE expression just below statistical significance. Thus, the ability of Fur and Zur to repress cnt gene expression are not eliminated by the presence of Rsp. However, there were significantly smaller increases in cnt gene expression in the double mutants compared to single mutants, suggesting that Rsp activation can still occur in the absence of these repressors. To determine if Rsp directly modulates expression of cnt genes, incubation of purified Rsp caused a DNA-specific band shift for the cntK and cntA promoters. Conclusions: Rsp activation may act to maintain basal cellular levels of staphylopine to scavenge free metals when needed, in addition to metal dependent regulation by Fur and Zur.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1021
Author(s):  
Carla Abrahamian ◽  
Christian Grimm

Microphthalmia-associated transcription factor (MITF) is the principal transcription factor regulating pivotal processes in melanoma cell development, growth, survival, proliferation, differentiation and invasion. In recent years, convincing evidence has been provided attesting key roles of endolysosomal cation channels, specifically TPCs and TRPMLs, in cancer, including breast cancer, glioblastoma, bladder cancer, hepatocellular carcinoma and melanoma. In this review, we provide a gene expression profile of these channels in different types of cancers and decipher their roles, in particular the roles of two-pore channel 2 (TPC2) and TRPML1 in melanocytes and melanoma. We specifically discuss the signaling cascades regulating MITF and the relationship between endolysosomal cation channels, MAPK, canonical Wnt/GSK3 pathways and MITF.


Author(s):  
Xingzhe Yang ◽  
Feng Li ◽  
Jie Ma ◽  
Yan Liu ◽  
Xuejiao Wang ◽  
...  

AbstractIn recent years, the incidence of fatigue has been increasing, and the effective prevention and treatment of fatigue has become an urgent problem. As a result, the genetic research of fatigue has become a hot spot. Transcriptome-level regulation is the key link in the gene regulatory network. The transcriptome includes messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). MRNAs are common research targets in gene expression profiling. Noncoding RNAs, including miRNAs, lncRNAs, circRNAs and so on, have been developed rapidly. Studies have shown that miRNAs are closely related to the occurrence and development of fatigue. MiRNAs can regulate the immune inflammatory reaction in the central nervous system (CNS), regulate the transmission of nerve impulses and gene expression, regulate brain development and brain function, and participate in the occurrence and development of fatigue by regulating mitochondrial function and energy metabolism. LncRNAs can regulate dopaminergic neurons to participate in the occurrence and development of fatigue. This has certain value in the diagnosis of chronic fatigue syndrome (CFS). CircRNAs can participate in the occurrence and development of fatigue by regulating the NF-κB pathway, TNF-α and IL-1β. The ceRNA hypothesis posits that in addition to the function of miRNAs in unidirectional regulation, mRNAs, lncRNAs and circRNAs can regulate gene expression by competitive binding with miRNAs, forming a ceRNA regulatory network with miRNAs. Therefore, we suggest that the miRNA-centered ceRNA regulatory network is closely related to fatigue. At present, there are few studies on fatigue-related ncRNA genes, and most of these limited studies are on miRNAs in ncRNAs. However, there are a few studies on the relationship between lncRNAs, cirRNAs and fatigue. Less research is available on the pathogenesis of fatigue based on the ceRNA regulatory network. Therefore, exploring the complex mechanism of fatigue based on the ceRNA regulatory network is of great significance. In this review, we summarize the relationship between miRNAs, lncRNAs and circRNAs in ncRNAs and fatigue, and focus on exploring the regulatory role of the miRNA-centered ceRNA regulatory network in the occurrence and development of fatigue, in order to gain a comprehensive, in-depth and new understanding of the essence of the fatigue gene regulatory network.


Sign in / Sign up

Export Citation Format

Share Document