scholarly journals A dual electro-optical biosensor based on Chlamydomonas reinhardtii immobilised on paper-based nanomodified screen-printed electrodes for herbicide monitoring

Author(s):  
Amina Antonacci ◽  
Raouia Attaallah ◽  
Fabiana Arduini ◽  
Aziz Amine ◽  
Maria Teresa Giardi ◽  
...  

Abstract The indiscriminate use of herbicides in agriculture contributes to soil and water pollution, with important endangering consequences on the ecosystems. Among the available analytical systems, algal biosensors have demonstrated to be valid tools thanks to their high sensitivity, cost-effectiveness, and eco-design. Herein, we report the development of a dual electro-optical biosensor for herbicide monitoring, based on Chlamydomonas reinhardtii whole cells immobilised on paper-based screen-printed electrodes modified with carbon black nanomaterials. To this aim, a systematic study was performed for the selection and characterisation of a collection among 28 different genetic variants of the alga with difference response behaviour towards diverse herbicide classes. Thus, CC125 strain was exploited as case study for the study of the analytical parameters. The biosensor was tested in standard solutions and real samples, providing high sensitivity (detection limit in the pico/nanomolar), high repeatability (RSD of 5% with n = 100), long lasting working (10 h) and storage stability (3 weeks), any interference in the presence of heavy metals and insecticides, and low matrix effect in drinking water and moderate effect in surface one.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Amina Antonacci ◽  
Raouia Attaallah ◽  
Fabiana Arduini ◽  
Aziz Amine ◽  
Maria Teresa Giardi ◽  
...  

AbstractThe indiscriminate use of herbicides in agriculture contributes to soil and water pollution, with important endangering consequences on the ecosystems. Among the available analytical systems, algal biosensors have demonstrated to be valid tools thanks to their high sensitivity, cost-effectiveness, and eco-design. Herein, we report the development of a dual electro-optical biosensor for herbicide monitoring, based on Chlamydomonas reinhardtii whole cells immobilised on paper-based screen-printed electrodes modified with carbon black nanomaterials. To this aim, a systematic study was performed for the selection and characterisation of a collection among 28 different genetic variants of the alga with difference response behaviour towards diverse herbicide classes. Thus, CC125 strain was exploited as case study for the study of the analytical parameters. The biosensor was tested in standard solutions and real samples, providing high sensitivity (detection limit in the pico/nanomolar), high repeatability (RSD of 5% with n = 100), long lasting working (10 h) and storage stability (3 weeks), any interference in the presence of heavy metals and insecticides, and low matrix effect in drinking water and moderate effect in surface one.


2019 ◽  
Vol 43 (48) ◽  
pp. 19397-19407
Author(s):  
P. Muthukumaran ◽  
R. Ramya ◽  
P. Thivya ◽  
J. Wilson ◽  
G. Ravi

We synthesized calcinated β-NiS with a highly crystalline porous nature and mixed it with Ppy to prepare a nanocomposite, which exhibited high electrocatalytic activity and this was then used to detect theophylline and uric acid with high sensitivity and stability.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 517 ◽  
Author(s):  
Nicolae-Bogdan Mincu ◽  
Veronica Lazar ◽  
Dana Stan ◽  
Carmen Marinela Mihailescu ◽  
Rodica Iosub ◽  
...  

Due to rapidly spreading infectious diseases and the high incidence of other diseases such as cancer or metabolic syndrome, there is a continuous need for the development of rapid and accurate diagnosis methods. Screen-printed electrodes-based biosensors have been reported to offer reliable results, with high sensitivity and selectivity and, in some cases, low detection limits. There are a series of materials (carbon, gold, platinum, etc.) used for the manufacturing of working electrodes. Each version comes with advantages, as well as challenges for their functionalization. Thus, the aim is to review the most promising biosensors developed using screen-printed electrodes for the detection/quantification of proteins, biomarkers, or pathogenic microorganisms.


2021 ◽  
Author(s):  
Hina Yaqub Abbasi ◽  
Zari Tehrani ◽  
Anitha Devadoss ◽  
Muhammad Ali ◽  
Soraya Moradi-Bachiller ◽  
...  

An immunosensor, capable of high sensitivity detection of beta-amyloid peptides, shown to be a reliable biomarker for Alzheimer’s disease, has been developed using screen printed graphene electrodes (SPGEs) modified with...


Biosensors ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 118
Author(s):  
Emiliano Martínez-Periñán ◽  
Cristina Gutiérrez-Sánchez ◽  
Tania García-Mendiola ◽  
Encarnación Lorenzo

Electrogenerated chemiluminescence (also called electrochemiluminescence (ECL)) has become a great focus of attention in different fields of analysis, mainly as a consequence of the potential remarkably high sensitivity and wide dynamic range. In the particular case of sensing applications, ECL biosensor unites the benefits of the high selectivity of biological recognition elements and the high sensitivity of ECL analysis methods. Hence, it is a powerful analytical device for sensitive detection of different analytes of interest in medical prognosis and diagnosis, food control and environment. These wide range of applications are increased by the introduction of screen-printed electrodes (SPEs). Disposable SPE-based biosensors cover the need to perform in-situ measurements with portable devices quickly and accurately. In this review, we sum up the latest biosensing applications and current progress on ECL bioanalysis combined with disposable SPEs in the field of bio affinity ECL sensors including immunosensors, DNA analysis and catalytic ECL sensors. Furthermore, the integration of nanomaterials with particular physical and chemical properties in the ECL biosensing systems has improved tremendously their sensitivity and overall performance, being one of the most appropriates research fields for the development of highly sensitive ECL biosensor devices.


Author(s):  
Max T. Otten

Labelling of antibodies with small gold probes is a highly sensitive technique for detecting specific molecules in biological tissue. Larger gold probes are usually well visible in TEM or STEM Bright-Field images of unstained specimens. In stained specimens, however, the contrast of the stain is frequently the same as that of the gold labels, making it virtually impossible to identify the labels, especially when smaller gold labels are used to increase the sensitivity of the immunolabelling technique. TEM or STEM Dark-Field images fare no better (Figs. 1a and 2a), again because of the absence of a clear contrast difference between gold labels and stain.Potentially much more useful is backscattered-electron imaging, since this will show differences in average atomic number which are sufficiently large between the metallic gold and the stains normally used. However, for the thin specimens and at high accelerating voltages of the STEM, the yield of backscattered electrons is very small, resulting in a very weak signal. Consequently, the backscattered-electron signal is often too noisy for detecting small labels, even for large spot sizes.


2020 ◽  
Vol 16 (3) ◽  
pp. 341-348
Author(s):  
Surinya Traipop ◽  
Suchada Chuanuwatanakul ◽  
Orawon Chailapakul ◽  
Eakkasit Punrat

Background: Recently, Derris scandens, a Thai herbal medicine with anti-inflammatory activity, is widely used as beverage and supplementary food. When the traditional medicine is a choice for health therapy, the simple and reliable equipment is required to control the suitable consuming amount of the active component. Objective: To develop the electrochemical sensor for genistein determination in Derris scandens with high sensitivity and rapid operation. Methods: An in-house screen-printed electrochemical sensor consisting of a three-electrode system was developed for genistein determination. A silver/silver chloride (Ag/AgCl) reference electrode, a carbon counter electrode and a carbon working electrode were prepared on a 0.3-mm-thick plastic substrate by the screen-printing technique using conductive ink. The dimensions of each sensor were 2.5×1.0 cm. Only 50 µL of sample solution was required on this device for the determination of genistein concentration by rapid response square wave voltammetry. Results: The oxidation peak of genistein appeared with good response in acidic media at a peak potential of 0.6 V. Moreover, the signal was enhanced by modifying the conductive carbon ink with cobalt( II) phthalocyanine. Under the optimized conditions, the linear range was found to be 2.5-150 µM and the detection limit was 1.5 µM. Moreover, the small volume extraction was successfully developed without any further pre-concentration. This proposed method was applied to determine genistein in Derris scandens with satisfying results. Conclusion: The proposed method is promising as an alternative method for genistein determination with facile and fast analysis.


2019 ◽  
Author(s):  
Michael Petronis ◽  
◽  
Vincent Twomey ◽  
William McCarthy ◽  
Craig MaGee
Keyword(s):  

2011 ◽  
Vol 56 (11) ◽  
pp. 3988-3995 ◽  
Author(s):  
Elena Jubete ◽  
Kamila Żelechowska ◽  
Oscar A. Loaiza ◽  
Pedro J. Lamas ◽  
Estibalitz Ochoteco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document