scholarly journals Characterization of resistance mechanisms of Enterobacter cloacae Complex Co-resistant to Carbapenem and Colistin

2020 ◽  
Author(s):  
Tieli Zhou ◽  
Shixing Liu ◽  
Renchi Fang ◽  
Ying Zhang ◽  
Lijiang Chen ◽  
...  

Abstract Background: The emergence of carbapenem-resistant and colistin-resistant ECC pose a huge challenge to infection control. The purpose of this study was to clarify the mechanism of the carbapenems and colistin co-resistance in Enterobacter cloacae Complex (ECC) strains.Methods: Nineteen ECC isolates co-resistant to carbapenems and colistin were collected from a regional medical center in China. Carbapenemase gene, extended-spectrum β-lactamase gene, AmpC cephalosporinase gene ampC, mcr series genes, and ecr gene were detected by PCR. Expression levels of outer membrane protein OmpC/OmpF and efflux pump protein AcrA/AcrB were investigated. And the structural modification of lipid A of 19 ECC strains was analyzed.Results: This study showed that the mechanisms of carbapenem resistance in this study are: 1. Generating carbapenemase (7 of 19); 2. The production of AmpC or ESBLs combined with decreased expression of out membrane protein (12 of 19). And the mechanism of colistin resistance is increaseing expression of acrA in the efflux pump AcrAB-TolC alone (5 of 19) or accompanied by a decrease of affinity between colistin and outer membrane caused by the modification of lipid A (14 of 19). Moreover, an ECC strain co-harboring plasmid-mediated mcr-4.3 and blaNDM-1 has been found.Conclusions: This study suggested that there is no overlap between the resistance mechanism of co-resistant ECC strains to carbapenem and colistin. However, the emergence of strain co-harboring plasmid-mediated resistance genes indicated that ECC is a potential carrier for the horizontal spread of carbapenems and colistin resistance.

2021 ◽  
Author(s):  
Shixing Liu ◽  
Renchi Fang ◽  
Ying Zhang ◽  
Lijiang Chen ◽  
Na Huang ◽  
...  

Abstract Background: The emergence of carbapenem-resistant and colistin-resistant ECC pose a huge challenge to infection control. The purpose of this study was to clarify the mechanism of the carbapenems and colistin co-resistance in Enterobacter cloacae Complex (ECC) strains. Methods: Nineteen ECC isolates co-resistant to carbapenems and colistin were collected from a regional medical center in China. Carbapenemase gene, extended-spectrum β-lactamase gene, AmpC cephalosporinase gene ampC, mcr series genes, and ecr gene were detected by PCR. Genetic clusters of based on hsp60 sequence analysis were performed. Expression levels of outer membrane protein OmpC/OmpF and efflux pump protein AcrA/AcrB were investigated. And the structural modification of lipid A of 19 ECC strains was analyzed. Results: This study showed that the mechanisms of carbapenem resistance in this study are: 1. Generating carbapenemase (7 of 19); 2. The production of AmpC or ESBLs combined with decreased expression of out membrane protein (12 of 19). hsp60 sequence analysis suggested 10 of 19 the strains belong to colistin hetero-resistant clusters and the mechanism of colistin resistance is increaseing expression of acrA in the efflux pump AcrAB-TolC alone (5 of 19) or accompanied by a decrease of affinity between colistin and outer membrane caused by the modification of lipid A (14 of 19). Moreover, an ECC strain co-harboring plasmid-mediated mcr-4.3 and blaNDM-1 has been found.Conclusions: This study suggested that there is no overlap between the resistance mechanism of co-resistant ECC strains to carbapenem and colistin. However, the emergence of strain co-harboring plasmid-mediated resistance genes indicated that ECC is a potential carrier for the horizontal spread of carbapenems and colistin resistance.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shixing Liu ◽  
Renchi Fang ◽  
Ying Zhang ◽  
Lijiang Chen ◽  
Na Huang ◽  
...  

Abstract Background The emergence of carbapenem-resistant and colistin-resistant ECC pose a huge challenge to infection control. The purpose of this study was to clarify the mechanism of the carbapenems and colistin co-resistance in Enterobacter cloacae Complex (ECC) strains. Results This study showed that the mechanisms of carbapenem resistance in this study are: 1. Generating carbapenemase (7 of 19); 2. The production of AmpC or ESBLs combined with decreased expression of out membrane protein (12 of 19). hsp60 sequence analysis suggested 10 of 19 the strains belong to colistin hetero-resistant clusters and the mechanism of colistin resistance is increasing expression of acrA in the efflux pump AcrAB-TolC alone (18 of 19) or accompanied by a decrease of affinity between colistin and outer membrane caused by the modification of lipid A (14 of 19). Moreover, an ECC strain co-harboring plasmid-mediated mcr-4.3 and blaNDM-1 has been found. Conclusions This study suggested that there is no overlap between the resistance mechanism of co-resistant ECC strains to carbapenem and colistin. However, the emergence of strain co-harboring plasmid-mediated resistance genes indicated that ECC is a potential carrier for the horizontal spread of carbapenems and colistin resistance.


2009 ◽  
Vol 22 (1) ◽  
pp. 161-182 ◽  
Author(s):  
George A. Jacoby

SUMMARY AmpC β-lactamases are clinically important cephalosporinases encoded on the chromosomes of many of the Enterobacteriaceae and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and β-lactamase inhibitor-β-lactam combinations. In many bacteria, AmpC enzymes are inducible and can be expressed at high levels by mutation. Overexpression confers resistance to broad-spectrum cephalosporins including cefotaxime, ceftazidime, and ceftriaxone and is a problem especially in infections due to Enterobacter aerogenes and Enterobacter cloacae, where an isolate initially susceptible to these agents may become resistant upon therapy. Transmissible plasmids have acquired genes for AmpC enzymes, which consequently can now appear in bacteria lacking or poorly expressing a chromosomal blaAmpC gene, such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Resistance due to plasmid-mediated AmpC enzymes is less common than extended-spectrum β-lactamase production in most parts of the world but may be both harder to detect and broader in spectrum. AmpC enzymes encoded by both chromosomal and plasmid genes are also evolving to hydrolyze broad-spectrum cephalosporins more efficiently. Techniques to identify AmpC β-lactamase-producing isolates are available but are still evolving and are not yet optimized for the clinical laboratory, which probably now underestimates this resistance mechanism. Carbapenems can usually be used to treat infections due to AmpC-producing bacteria, but carbapenem resistance can arise in some organisms by mutations that reduce influx (outer membrane porin loss) or enhance efflux (efflux pump activation).


2012 ◽  
Vol 56 (7) ◽  
pp. 3826-3832 ◽  
Author(s):  
Manuella Catel-Ferreira ◽  
Rony Nehmé ◽  
Virginie Molle ◽  
Jesús Aranda ◽  
Emeline Bouffartigues ◽  
...  

ABSTRACTThe increasing number of carbapenem-resistantAcinetobacter baumanniiisolates is a major cause for concern which restricts therapeutic options to treat severe infections caused by this emerging pathogen. To identify the molecular mechanisms involved in carbapenem resistance, we studied the contribution of an outer membrane protein homologue of thePseudomonas aeruginosaOprD porin. Suspected to be the preferred pathway of carbapenems inA. baumannii, theoprDhomologue gene was inactivated in strain ATCC 17978. Comparison of wild-type and mutant strains did not confirm the expected increased resistance to any antibiotic tested. OprD homologue sequence analysis revealed that this protein actually belongs to an OprD subgroup but is closer to theP. aeruginosaOprQ protein, with which it could share some functions, e.g., allowing bacterial survival under low-iron or -magnesium growth conditions or under poor oxygenation. We thus overexpressed and purified a recombinant OprD homologue protein to further examine its functional properties. As a specific channel, this porin presented rather low single-channel conductance, i.e., 28 pS in 1 M KCl, and was partially closed by micro- and millimolar concentrations of Fe3+and Mg2+, respectively, but not by imipenem and meropenem or basic amino acids. TheA. baumanniiOprD homologue is likely not involved in the carbapenem resistance mechanism, but as an OprQ-like protein, it could contribute to the adaptation of this bacterium to magnesium- and/or iron-depleted environments.


2021 ◽  
Vol 9 (6) ◽  
pp. 1295
Author(s):  
Noor Andryan Ilsan ◽  
Yuarn-Jang Lee ◽  
Shu-Chen Kuo ◽  
I-Hui Lee ◽  
Tzu-Wen Huang

Acinetobacter baumannii, a Gram-negative bacterium, is an important nosocomial pathogen. Colistin-resistant A. baumannii is becoming a new concern, since colistin is one of the last-line antibiotics for infections by carbapenem-resistant A. baumannii. From 452 carbapenem-resistant isolates collected in a teaching hospital in Taipei, Taiwan, we identified seven that were resistant to colistin. Carbapenem resistance in these isolates is attributed to the presence of carbapenemase gene blaOXA-23 in their genomes. Colistin resistance is presumably conferred by mutations in the sensor kinase domain of PmrB found in these isolates, which are known to result in modification of colistin target lipid A via the PmrB–PmrA–PmrC signal transduction pathway. Overexpression of pmrC, eptA, and naxD was observed in all seven isolates. Colistin resistance mediated by pmrB mutations has never been reported in Taiwan. One of the seven isolates contained three mutations in lpxD and exhibited an altered lipopolysaccharide profile, which may contribute to its colistin resistance. No significant difference in growth rates was observed between the isolates and the reference strain, suggesting no fitness cost of colistin resistance. Biofilm formation abilities of the isolates were lower than that of the reference. Interestingly, one of the isolates was heteroresistant to colistin. Four of the isolates were significantly more virulent to wax moth larvae than the reference.


1991 ◽  
Vol 173 (1) ◽  
pp. 156-160 ◽  
Author(s):  
J Stoorvogel ◽  
M J van Bussel ◽  
J Tommassen ◽  
J A van de Klundert

2019 ◽  
Vol 63 (3) ◽  
Author(s):  
Stefanie Gerson ◽  
Jonathan W. Betts ◽  
Kai Lucaßen ◽  
Carolina Silva Nodari ◽  
Julia Wille ◽  
...  

ABSTRACT Colistin resistance in Acinetobacter baumannii is of great concern and is a threat to human health. In this study, we investigate the mechanisms of colistin resistance in four isogenic pairs of A. baumannii isolates displaying an increase in colistin MICs. A mutation in pmrB was detected in each colistin-resistant isolate, three of which were novel (A28V, I232T, and ΔL9-G12). Increased expression of pmrC was shown by semi-quantitative reverse transcription-PCR (qRT-PCR) for three colistin-resistant isolates, and the addition of phosphoethanolamine (PEtN) to lipid A by PmrC was revealed by mass spectrometry. Interestingly, PEtN addition was also observed in some colistin-susceptible isolates, indicating that this resistance mechanism might be strain specific and that other factors could contribute to colistin resistance. Furthermore, the introduction of pmrAB carrying the short amino acid deletion ΔL9-G12 into a pmrAB knockout strain resulted in increased pmrC expression and lipid A modification, but colistin MICs remained unchanged, further supporting the strain specificity of this colistin resistance mechanism. Of note, a mutation in the pmrC homologue eptA and a point mutation in ISAba1 upstream of eptA were associated with colistin resistance and increased eptA expression, which is a hitherto undescribed resistance mechanism. Moreover, no cost of fitness was observed for colistin-resistant isolates, while the virulence of these isolates was increased in a Galleria mellonella infection model. Although the mutations in pmrB were associated with colistin resistance, PEtN addition appears not to be the sole factor leading to colistin resistance, indicating that the mechanism of colistin resistance is far more complex than previously suspected and is potentially strain specific.


Sign in / Sign up

Export Citation Format

Share Document