oxygen gradients
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 35)

H-INDEX

35
(FIVE YEARS 3)

Author(s):  
Rajeeva Pandian Navaneeth Krishna ◽  
Abhishek Jain

BACKGROUND: Almost 95% of the venous valves are micron scale found in veins smaller than 300μm diameter. The fluid dynamics of blood flow and transport through these micro venous valves and their contribution to thrombosis is not yet well understood or characterized due to difficulty in making direct measurements in murine models. OBJECTIVE: The unique flow patterns that may arise in physiological and pathological non-actuating micro venous valves are predicted. METHODS: Computational fluid and transport simulations are used to model blood flow and oxygen gradients in a microfluidic vein. RESULTS: The model successfully recreates the typical non-Newtonian vortical flow within the valve cusps seen in preclinical experimental models and in clinic. The analysis further reveals variation in the vortex strengths due to temporal changes in blood flow. The cusp oxygen is typically low from the main lumen, and it is regulated by systemic venous flow. CONCLUSIONS: The analysis leads to a clinically-relevant hypothesis that micro venous valves may not create a hypoxic environment needed for endothelial inflammation, which is one of the main causes of thrombosis. However, incompetent micro venous valves are still locations for complex fluid dynamics of blood leading to low shear regions that may contribute to thrombosis through other pathways.


2021 ◽  
Author(s):  
Steven A. Wilbert ◽  
Dianne K. Newman

Microbial assemblages are omnipresent in the biosphere, forming communities on the surfaces of roots, rocks, and within living tissues. These communities can exhibit strikingly beautiful compositional structures, with certain members reproducibly occupying particular spatiotemporal microniches. Yet often, we lack the ability to explain the spatial patterns we see within them. To test the hypothesis that certain spatial patterns in microbial communities may be explained by the exchange of redox-active metabolites whose biological function is sensitive to environmental gradients, here we developed a simple community consisting of synthetic Pseudomonas aeruginosa strains with a partitioned denitrification pathway: a strict consumer and strict producer of nitric oxide (NO), a key pathway intermediate. Because NO can be both toxic or beneficial depending on the amount of oxygen present, this system provided an opportunity to investigate whether dynamic oxygen gradients can tune metabolic cross-feeding in a predictable fashion. Using a combination of genetic analysis, different growth environments and imaging, we show that oxygen availability controls whether NO cross-feeding is commensal or mutually beneficial, and that this organizing principle maps to the microscale. More generally, this work underscores the importance of considering the double-edged roles redox-active metabolites can play in shaping microbial communities.


2021 ◽  
Vol 18 (185) ◽  
Author(s):  
Alexandros A. Fragkopoulos ◽  
Jérémy Vachier ◽  
Johannes Frey ◽  
Flora-Maud Le Menn ◽  
Marco G. Mazza ◽  
...  

For billions of years, photosynthetic microbes have evolved under the variable exposure to sunlight in diverse ecosystems and microhabitats all over our planet. Their abilities to dynamically respond to alterations of the luminous intensity, including phototaxis, surface association and diurnal cell cycles, are pivotal for their survival. If these strategies fail in the absence of light, the microbes can still sustain essential metabolic functionalities and motility by switching their energy production from photosynthesis to oxygen respiration. For suspensions of motile C. reinhardtii cells above a critical density, we demonstrate that this switch reversibly controls collective microbial aggregation. Aerobic respiration dominates over photosynthesis in conditions of low light, which causes the microbial motility to sensitively depend on the local availability of oxygen. For dense microbial populations in self-generated oxygen gradients, microfluidic experiments and continuum theory based on a reaction–diffusion mechanism show that oxygen-regulated motility enables the collective emergence of highly localized regions of high and low cell densities.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1879
Author(s):  
Maxwell Mathias ◽  
Jill Chang ◽  
Marta Perez ◽  
Ola Saugstad

Oxygen is the final electron acceptor in aerobic respiration, and a lack of oxygen can result in bioenergetic failure and cell death. Thus, administration of supplemental concentrations of oxygen to overcome barriers to tissue oxygen delivery (e.g., heart failure, lung disease, ischemia), can rescue dying cells where cellular oxygen content is low. However, the balance of oxygen delivery and oxygen consumption relies on tightly controlled oxygen gradients and compartmentalized redox potential. While therapeutic oxygen delivery can be life-saving, it can disrupt growth and development, impair bioenergetic function, and induce inflammation. Newborns, and premature newborns especially, have features that confer particular susceptibility to hyperoxic injury due to oxidative stress. In this review, we will describe the unique features of newborn redox physiology and antioxidant defenses, the history of therapeutic oxygen use in this population and its role in disease, and clinical trends in the use of therapeutic oxygen and mitigation of neonatal oxidative injury.


2021 ◽  
pp. 2100190
Author(s):  
Michael R. Blatchley ◽  
Franklyn Hall ◽  
Dimitris Ntekoumes ◽  
Hyunwoo Cho ◽  
Vidur Kailash ◽  
...  

2021 ◽  
Author(s):  
Joshua D. Kerkaert ◽  
François Le Mauff ◽  
Benjamin R Wucher ◽  
Sarah R. Beattie ◽  
Elisa M. Vesely ◽  
...  

Alanine metabolism has been suggested as an adaptation strategy to oxygen limitation in organisms ranging from plants to mammals. Within the pulmonary infection microenvironment A. fumigatus forms biofilms with steep oxygen gradients defined by regions of oxygen limitation. A significant increase in alanine levels was observed in A. fumigatus cultured under oxygen limiting conditions. An alanine aminotransferase, AlaA, was observed to function in alanine catabolism and is required for several aspects of A. fumigatus biofilm physiology. Loss of alaA, or its catalytic activity, results in decreased adherence of biofilms through a defect in the maturation of the extracellular matrix polysaccharide galactosaminogalactan (GAG). Additionally, exposure of cell wall polysaccharides is also impacted by loss of alaA and loss of AlaA catalytic activity confers increased biofilm susceptibility to echinocandin treatment which is correlated with enhanced fungicidal activity. The increase in echinocandin susceptibility is specific to biofilms and chemical inhibition of alaA by the alanine aminotransferase inhibitor β-chloro-L-alanine is sufficient to sensitize A. fumigatus biofilms to echinocandin treatment. Finally, loss of alaA increases susceptibility of A. fumigatus to in vivo echinocandin treatment in a murine model of invasive pulmonary aspergillosis. Our results provide insight into the interplay of metabolism, biofilm formation, and antifungal drug resistance in A. fumigatus and describes a mechanism of increasing susceptibility of A. fumigatus biofilms to the echinocandin class of antifungal drugs.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Moritz Buck ◽  
Sarahi L. Garcia ◽  
Leyden Fernandez ◽  
Gaëtan Martin ◽  
Gustavo A. Martinez-Rodriguez ◽  
...  

AbstractStratified lakes and ponds featuring steep oxygen gradients are significant net sources of greenhouse gases and hotspots in the carbon cycle. Despite their significant biogeochemical roles, the microbial communities, especially in the oxygen depleted compartments, are poorly known. Here, we present a comprehensive dataset including 267 shotgun metagenomes from 41 stratified lakes and ponds mainly located in the boreal and subarctic regions, but also including one tropical reservoir and one temperate lake. For most lakes and ponds, the data includes a vertical sample set spanning from the oxic surface to the anoxic bottom layer. The majority of the samples were collected during the open water period, but also a total of 29 samples were collected from under the ice. In addition to the metagenomic sequences, the dataset includes environmental variables for the samples, such as oxygen, nutrient and organic carbon concentrations. The dataset is ideal for further exploring the microbial taxonomic and functional diversity in freshwater environments and potential climate change impacts on the functioning of these ecosystems.


2021 ◽  
Author(s):  
Daniel Shoup ◽  
Tristan Ursell

Microbial communities often respond to environmental cues by adopting collective behaviors--like biofilms or swarming--that benefit the population. Bioconvection is a distinct and robust collective behavior wherein microbes locally gather into dense groups and subsequently plume downward through fluid environments, driving flow and mixing on scales thousands of times larger than an individual cell. Though bioconvection was observed more than 100 years ago, effects of differing physical and chemical inputs, as well as its potential selective advantages to different species of microbes, remain largely unexplored. In the canonical microbial bioconvector Bacillus subtilis, density inversions that drive this flow are setup by vertically oriented oxygen gradients that originate from an air-liquid interface. In this work, we develop Escherichia coli as a complementary model organism for the study of bioconvection. We show that for E. coli and B. subtilis, bioconvection confers a context-dependent growth benefit with clear genetic correlates to motility and chemotaxis. We found that fluid depth, cell concentration, and carbon availability have complimentary effects on the emergence and timing of bioconvective patterns, and whereas oxygen gradients are required for B. subtilis bioconvection, we found that E. coli deficient in aerotaxis (Δaer) or energy-taxis (Δtsr) still bioconvect, as do cultures that lack an air-liquid interface. Thus, in two distantly related microbes, bioconvection confers context-dependent growth benefits, and E. coli bioconvection is robustly elicited by multiple types of chemotaxis. These results greatly expand the set of physical and metabolic conditions in which this striking collective behavior can be expected and demonstrate its potential to be a generic force for behavioral selection across ecological contexts.


Sign in / Sign up

Export Citation Format

Share Document