scholarly journals Proteomics reveals the effects of drought stress on the kernel development and starch formation of waxy maize

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jian Guo ◽  
Lingling Qu ◽  
Yifan Hu ◽  
Weiping Lu ◽  
Dalei Lu

Abstract Background Kernel development and starch formation are the primary determinants of maize yield and quality, which are considerably influenced by drought stress. To clarify the response of maize kernel to drought stress, we established well-watered (WW) and water-stressed (WS) conditions at 1–30 days after pollination (dap) on waxy maize (Zea mays L. sinensis Kulesh). Results Kernel development, starch accumulation, and activities of starch biosynthetic enzymes were significantly reduced by drought stress. The morphology of starch granules changed, whereas the grain filling rate was accelerated. A comparative proteomics approach was applied to analyze the proteome change in kernels under two treatments at 10 dap and 25 dap. Under the WS conditions, 487 and 465 differentially accumulated proteins (DAPs) were identified at 10 dap and 25 dap, respectively. Drought induced the downregulation of proteins involved in the oxidation–reduction process and oxidoreductase, peroxidase, catalase, glutamine synthetase, abscisic acid stress ripening 1, and lipoxygenase, which might be an important reason for the effect of drought stress on kernel development. Notably, several proteins involved in waxy maize endosperm and starch biosynthesis were upregulated at early-kernel stage under WS conditions, which might have accelerated endosperm development and starch synthesis. Additionally, 17 and 11 common DAPs were sustained in the upregulated and downregulated DAP groups, respectively, at 10 dap and 25 dap. Among these 28 proteins, four maize homologs (i.e., A0A1D6H543, B4FTP0, B6SLJ0, and A0A1D6H5J5) were considered as candidate proteins that affected kernel development and drought stress response by comparing with the rice genome. Conclusions The proteomic changes caused by drought were highly correlated with kernel development and starch accumulation, which were closely related to the final yield and quality of waxy maize. Our results provided a foundation for the enhanced understanding of kernel development and starch formation in response to drought stress in waxy maize.

2014 ◽  
Vol 13 (11) ◽  
pp. 2399-2406 ◽  
Author(s):  
Bing YI ◽  
Yu-fei ZHOU ◽  
Ming-yue GAO ◽  
Zhuang ZHANG ◽  
Yi HAN ◽  
...  

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaoyun Liu ◽  
Junling Luo ◽  
Tiantian Li ◽  
Huilan Yang ◽  
Ping Wang ◽  
...  

AbstractSDG711 is a histone H3K27me2/3 transmethylase in rice, a homolog of CLF in Arabidopsis, and plays key roles in regulating flowering time and panicle development. In this work, we investigated the role of SDG711 in rice seed development. Overexpression and downregulation of SDG711 lead to a decrease and increase in the expression level of genes related to starch accumulation, resulting in smaller seeds or even seed abortion. ChIP assay showed that SDG711-mediated H3K27me3 changed significantly in genes related to endosperm development, and SDG711 can directly bind to the gene body region of several starch synthesis genes and amylase genes. In addition, H3K4me3 and H3K9ac modifications also cooperate with H3K27me3 to regulate the development of the endosperm. Our results suggest that the crosstalk between SDG711-mediated H3K27me3 and H3K4me3, and H3K9ac are involved in starch accumulation to control normal seed development.


2020 ◽  
Author(s):  
Xiaoyun Liu ◽  
Junling Luo ◽  
Tiantian Li ◽  
Huilan Yang ◽  
Ping Wang ◽  
...  

Abstract SDG711 is a histone H3K27me2/3 transmethylases in rice, homolog ofCLFin Arabidopsis, that plays key roles in regulating of flowering time and panicle development. In this work, we investigated that the role of SDG711 in rice seed development. Overexpression and down-regulation of SDG711lead to the decrease and increase of the expression level of genes related to starch accumulation, resulting in smaller seed or even seed abortion. ChIP assay showed that SDG711-mediated H3K27me3 changed significantly in genes related to endosperm development and SDG711 can directly bind to the gene body region of several starch synthesis genes and amylase genes. In addition, H3K4me3 and H3K9ac modifications also cooperate with H3K27me3 to regulate the development of endosperm. Our results suggested that the crosstalk of SDG711-mediated H3K27me3 with H3K4me3 and H3K9ac are involved in starch accumulation to control normal seed development.


2021 ◽  
Vol 280 ◽  
pp. 109904
Author(s):  
Remi Chakma ◽  
Arindam Biswas ◽  
Pantamit Saekong ◽  
Hayat Ullah ◽  
Avishek Datta

2007 ◽  
Vol 6 (7) ◽  
pp. 808-815 ◽  
Author(s):  
Hai-yan ZHANG ◽  
Shu-ting DONG ◽  
Rong-qi GAO ◽  
Qing-quan SUN

2010 ◽  
Vol 58 (13) ◽  
pp. 8043-8047 ◽  
Author(s):  
Hongxin Jiang ◽  
Junyi Lio ◽  
Mike Blanco ◽  
Mark Campbell ◽  
Jay-lin Jane

2014 ◽  
Vol 95 (1) ◽  
pp. 210-215 ◽  
Author(s):  
Dalei Lu ◽  
Xuemei Cai ◽  
Junyu Zhao ◽  
Xin Shen ◽  
Weiping Lu

2013 ◽  
Vol 39 (10) ◽  
pp. 1856
Author(s):  
Jiang-Ping REN ◽  
Ya-Ying WANG ◽  
Xin-Guo WANG ◽  
Na WANG ◽  
Xin CHEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document