scholarly journals Quick Delivery of Aldehyde Dehydrogenase into Yeast Vacuoles by QRPL Peptide Sequence on Carboxypeptidase Y

2020 ◽  
Author(s):  
Dong Jun Park ◽  
Ngoc-Tu Nguyen ◽  
Ji Hun Kim ◽  
Ngoc-Han Nguyen ◽  
Sunchang Kim ◽  
...  

Abstract Background The signal peptide sequence is known to increase transport efficiency to organelles in eukaryotic cells. In this study, we focus on the signal peptide of the vacuolar protein for vacuolar targeting. Results The signal peptide sequence QRPL of carboxypeptidase Y (CPY), a vacuolar protein, was inserted inside the green fluorescent protein (GFP) that does not locate in vacuole for vacuolar targeting. The protein location was then confirmed by confocal microscopy. Fascinatingly, the green fluorescent protein that contains QRPL inside the sequence could be expressed faster than its natural form (within 1 hour after induction). In addition, aldehyde dehydrogenase 6 (ALD6), a cytosolic protein has engineered the sequence with QRPL to be transported to the vacuole. The aldehyde removal activity of ALD6 protein in the recombinant yeast was then analyzed by measuring the luminescent intensity in Vibrio fischeri . Conclusions In summary, the signal peptide QRPL could be used not only to transport target proteins accurately to vacuole but also to improve the protein activity, as well as to shorten the induction time.

2006 ◽  
Vol 72 (11) ◽  
pp. 7183-7192 ◽  
Author(s):  
Yoshimi Kikuchi ◽  
Masayo Date ◽  
Hiroshi Itaya ◽  
Kazuhiko Matsui ◽  
Long-Fei Wu

ABSTRACT Compared to those of other gram-positive bacteria, the genetic structure of the Corynebacterium glutamicum Tat system is unique in that it contains the tatE gene in addition to tatA, tatB, and tatC. The tatE homologue has been detected only in the genomes of gram-negative enterobacteria. To assess the function of the C. glutamicum Tat pathway, we cloned the tatA, tatB, tatC, and tatE genes from C. glutamicum ATCC 13869 and constructed mutants carrying deletions of each tat gene or of both the tatA and tatE genes. Using green fluorescent protein (GFP) fused with the twin-arginine signal peptide of the Escherichia coli TorA protein, we demonstrated that the minimal functional Tat system required TatA and TatC. TatA and TatE provide overlapping function. Unlike the TatB proteins from gram-negative bacteria, C. glutamicum TatB was dispensable for Tat function, although it was required for maximal efficiency of secretion. The signal peptide sequence of the isomaltodextranase (IMD) of Arthrobacter globiformis contains a twin-arginine motif. We showed that both IMD and GFP fused with the signal peptide of IMD were secreted via the C. glutamicum Tat pathway. These observations indicate that IMD is a bona fide Tat substrate and imply great potential of the C. glutamicum Tat system for industrial production of heterologous folded proteins.


2000 ◽  
Vol 11 (7) ◽  
pp. 2429-2443 ◽  
Author(s):  
Michael J. Conboy ◽  
Martha S. Cyert

We have characterized LUV1/RKI1/TCS3/VPS54, a novel yeast gene required to maintain normal vacuolar morphology. Theluv1 mutant was identified in a genetic screen for mutants requiring the phosphatase calcineurin for vegetative growth.luv1 mutants lack a morphologically intact vacuole and instead accumulate small vesicles that are acidified and contain the vacuolar proteins alkaline phosphatase and carboxypeptidase Y and the vacuolar membrane H+-ATPase. Endocytosis appears qualitatively normal in luv1 mutants, but some portion (28%) of carboxypeptidase Y is secreted. luv1 mutants are sensitive to several ions (Zn2+, Mn2+, and Cd2+) and to pH extremes. These mutants are also sensitive to hygromycin B, caffeine, and FK506, a specific inhibitor of calcineurin. Some vacuolar protein-sorting mutants display similar drug and ion sensitivities, including sensitivity to FK506. Luv1p sediments at 100,000 × g and can be solubilized by salt or carbonate, indicating that it is a peripheral membrane protein. A Green Fluorescent Protein–Luv1 fusion protein colocalizes with the dye FM 4-64 at the endosome, and hemagglutinin-tagged Luv1p colocalizes with the trans-Golgi network/endosomal protease Kex2p. Computer analysis predicts a short coiled-coil domain in Luv1p. We propose that this protein maintains traffic through or the integrity of the early endosome and that this function is required for proper vacuolar morphology.


2014 ◽  
Vol 80 (10) ◽  
pp. 3219-3232 ◽  
Author(s):  
Anthony J. Snyder ◽  
Sampriti Mukherjee ◽  
J. Kyle Glass ◽  
Daniel B. Kearns ◽  
Suchetana Mukhopadhyay

ABSTRACTCellular processes, such as the digestion of macromolecules, phosphate acquisition, and cell motility, require bacterial secretion systems. InBacillus subtilis, the predominant protein export pathways are Sec (generalized secretory pathway) and Tat (twin-arginine translocase). Unlike Sec, which secretes unfolded proteins, the Tat machinery secretes fully folded proteins across the plasma membrane and into the medium. Proteins are directed for Tat-dependent export by N-terminal signal peptides that contain a conserved twin-arginine motif. Thus, utilizing the Tat secretion system by fusing a Tat signal peptide is an attractive strategy for the production and export of heterologous proteins. As a proof of concept, we expressed green fluorescent protein (GFP) fused to the PhoD Tat signal peptide in the laboratory and ancestral strains ofB. subtilis. Secretion of the Tat-GFP construct, as well as secretion of proteins in general, was substantially increased in the ancestral strain. Furthermore, our results show that secreted, fluorescent GFP could be purified directly from the extracellular medium. Nonetheless, export was not dependent on the known Tat secretion components or the signal peptide twin-arginine motif. We propose that the ancestral strain contains additional Tat components and/or secretion regulators that were abrogated following domestication.


2000 ◽  
Vol 11 (10) ◽  
pp. 3365-3380 ◽  
Author(s):  
Alexander Y. Amerik ◽  
Jonathan Nowak ◽  
Sowmya Swaminathan ◽  
Mark Hochstrasser

The Saccharomyces cerevisiae DOA4 gene encodes a deubiquitinating enzyme that is required for rapid degradation of ubiquitin–proteasome pathway substrates. Both genetic and biochemical data suggest that Doa4 acts in this pathway by facilitating ubiquitin recycling from ubiquitinated intermediates targeted to the proteasome. Here we describe the isolation of 12 spontaneous extragenic suppressors of the doa4-1 mutation; these involve seven different genes, six of which were cloned. Surprisingly, all of the clonedDID (Doa4-independent degradation) genes encode components of the vacuolar protein-sorting (Vps) pathway. In particular, all are class E Vps factors, which function in the maturation of a late endosome/prevacuolar compartment into multivesicular bodies that then fuse with the vacuole. Four of the six Did proteins are structurally related, suggesting an overlap in function. In wild-type and several vps strains, Doa4–green fluorescent protein displays a cytoplasmic/nuclear distribution. However, in cells lacking the Vps4/Did6 ATPase, a large fraction of Doa4–green fluorescent protein, like several other Vps factors, concentrates at the late endosome–like class E compartment adjacent to the vacuole. These results suggest an unanticipated connection between protein deubiquitination and endomembrane protein trafficking in which Doa4 acts at the late endosome/prevacuolar compartment to recover ubiquitin from ubiquitinated membrane proteins en route to the vacuole.


Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 72-79
Author(s):  
Vicente J.F. Freitas ◽  
Iana S. Campelo ◽  
Mirelly M.A.S. Silva ◽  
Camila M. Cavalcanti ◽  
Dárcio I.A. Teixeira ◽  
...  

SummaryThis study aimed to investigate the ability of disulphide-less crotamine (dLCr) to complex DNA and to evaluate whether the DNA–dLCr complex is capable of improving transfection in bovine embryos. Three experiments were performed to: (i) evaluate the formation and stability of the DNA–dLCr complex; (ii) assess the dLCr embryotoxicity by exposure of bovine embryos to dLCr; and (iii) assess the efficiency of bovine embryo transfection after microinjection of the DNA–dLCr complex or green fluorescent protein (GFP) plasmid alone (control). DNA complexation by dLCr after 30 min of incubation at 1:100 and 1:50 proportions presented higher efficiency (P < 0.05) than the two controls: native crotamine (NCr) 1:10 and lipofectamine. There was no difference between DNA–dLCr 1:25 and the controls. The DNA–dLCr complexation was evaluated at different proportions and times. In all, at least half of maximum complexation was achieved within the initial 30 min. No embryotoxicity of dLCr was verified after exposure of in vitro fertilized embryos to different concentrations of the peptide. The effectiveness of dLCr to improve exogenous gene expression was evaluated by microinjection of the DNA–dLCr complex into in vitro fertilized zygotes, followed by verification of both embryo development and GFP expression. From embryos microinjected with DNA only, 4.6% and 2.8% expressed the GFP transgene at day 5 and day 7, respectively. The DNA–dLCr complex did not increase the number of GFP-positive embryos. In conclusion, dLCr forms a complex with DNA and its application in in vitro culture is possible. However, the dLCr peptide sequence should be redesigned to improve GFP expression.


2009 ◽  
Vol 297 (5) ◽  
pp. L871-L880 ◽  
Author(s):  
Elena M. Sorokina ◽  
Sheldon I. Feinstein ◽  
Tatyana N. Milovanova ◽  
Aron B. Fisher

Peroxiredoxin 6 (Prdx6), an enzyme with glutathione peroxidase and PLA2 (aiPLA2) activities, is highly expressed in respiratory epithelium, where it participates in phospholipid turnover and antioxidant defense. Prdx6 has been localized by immunocytochemistry and subcellular fractionation to acidic organelles (lung lamellar bodies and lysosomes) and cytosol. On the basis of their pH optima, we have postulated that protein subcellular localization determines the balance between the two activities of Prdx6. Using green fluorescent protein-labeled protein expression in alveolar epithelial cell lines, we showed Prdx6 localization to organellar structures resembling lamellar bodies in mouse lung epithelial (MLE-12) cells and lysosomes in A549 cells. Localization within lamellar bodies/lysosomes was in the luminal compartment. Targeting to lysosome-like organelles was abolished by the deletion of amino acids 31–40 from the Prdx6 NH2-terminal region; deletion of the COOH-terminal region had no effect. A green fluorescent protein-labeled peptide containing only amino acids 31–40 showed lysosomal targeting that was abolished by mutation of S32 or G34 within the peptide. Studies with mutated protein indicated that lipid binding was not necessary for Prdx6 targeting. This peptide sequence has no homology to known organellar targeting motifs. These studies indicate that the localization of Prdx6 in acidic organelles and consequent PLA2 activity depend on a novel 10-aa peptide located at positions 31–40 of the protein.


Sign in / Sign up

Export Citation Format

Share Document