scholarly journals Kinetic Control Concept for the Diffusion Processes of Paracetamol Active Molecules Across Affinity Polymer Membranes

Author(s):  
Sanae Tarhouchi ◽  
Rkia Louafy ◽  
El Houssine EL Atmani ◽  
Miloudi Hlaïbi

Abstract Background: Paracetamol compound remains the most used pharmaceutical as an analgesic and antipyretic for pain and fever. It has been detected in aquatic environments. The recovery of this compound from wastewater is one of the important operations carried out by modern industries. Its recovery is especially important for environmental protection. Currently, research is focused on membrane technology that has gained considerable interest over the last decades due to the various advantages that it presents.Result: Our work reports the selective extraction of paracetamol from liquid solution using two types of affinity polymer membranes: (i) polymer inclusion membrane (PIM) and (ii) grafted polymer membrane (GPM). The same extractive agent, gluconic acid (GA), is used for both. After total characterization, the developed membranes were adopted. Kinetic and thermodynamic models have been used to determine the values of various macroscopic parameters, permeability (P), and initial flux (J0), to understand the membrane performance. The same techniques have been used to determine the values of different microscopic parameters, association constant (Kass), and apparent diffusion coefficient (D*) that determine the interaction between the paracetamol substrates and the extractive agent, necessary for the diffusion of paracetamol molecules through the membrane. Similarly, the effects of initial concentration (C0), acidity (pH), and temperature were examined.Conclusion: The experimental results allow the determination of values of activation and thermodynamic parameters (Ea, ΔH#, ΔS#, ΔH#dis, and ΔH#th). The results explain the membrane performances and confirm that the energetic or kinetic aspects control the mechanisms related to the oriented processes. The results also indicate that it is possible to recycle wastewater and eliminate contaminants such as paracetamol.

BMC Chemistry ◽  
2022 ◽  
Vol 16 (1) ◽  
Author(s):  
Sanae Tarhouchi ◽  
Rkia Louafy ◽  
El Houssine El Atmani ◽  
Miloudi Hlaïbi

Abstract Background Paracetamol compound remains the most used pharmaceutical as an analgesic and antipyretic for pain and fever, often identified in aquatic environments. The elimination of this compound from wastewater is one of the critical operations carried out by advanced industries. Our work objective was to assess studies based on membrane processes by using two membranes, polymer inclusion membrane and grafted polymer membrane containing gluconic acid as an extractive agent for extracting and recovering paracetamol compound from aqueous solutions. Result The elaborated membrane characterizations were assessed using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Kinetic and thermodynamic models have been applied to determine the values of macroscopic (P and J0), microscopic (D* and Kass), activation and thermodynamic parameters (Ea, ΔH#, ΔS#, ΔH#diss, and ΔH#th). All results showed that the PVA–GA was more performant than its counterpart GPM–GA, with apparent diffusion coefficient values (107D*) of 41.807 and 31.211 cm2 s−1 respectively, at T = 308 K. In addition, the extraction process for these membranes was more efficient at pH = 1. The relatively low values of activation energy (Ea), activation association enthalpy (ΔH≠ass), and activation dissociation enthalpy (ΔH≠diss) have indicated a kinetic control for the oriented processes studied across the adopted membranes much more than the energetic counterpart. Conclusion The results presented for the quantification of oriented membrane process ensured clean, sustainable, and environmentally friendly methods for the extraction and recovery of paracetamol molecule as a high-value substance.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wajid Ali Khan ◽  
Muhammad Balal Arain ◽  
Hashmat Bibi ◽  
Mustafa Tuzen ◽  
Nasrullah Shah ◽  
...  

AbstractIn this study, an extremely effective electromembrane extraction (EME) method was developed for the selective extraction of Cu(II) followed by Red-Green-Blue (RGB) detection. The effective parameters optimized for the extraction efficiency of EME include applied voltage, extraction time, supported liquid membrane (SLM) composition, pH of acceptor/donor phases, and stirring rate. Under optimized conditions, Cu(II) was extracted from a 3 mL aqueous donor phase to 8 µL of 100 mM HCl acceptor solution through 1-octanol SLM using an applied voltage of 50 V for 15 min. The proposed method provides a working range of 0.1–0.75 µg·mL−1 with 0.03 µg·mL−1 limit for detection. Finally, the developed technique was applied to different environmental water samples for monitoring environmental pollution. Obtained relative recoveries were within the range of 93–106%. The relative standard deviation (RSD) and enhancement factor (EF) were found to be ≤4.8% and 100 respectively. We hope that this method can be introduced for quantitative determination of Cu(II) as a fast, simple, portable, inexpensive, effective, and precise procedure.


2014 ◽  
Vol 5 (6(71)) ◽  
pp. 26
Author(s):  
Инесса Анатольевна Буртная ◽  
Отар Отарович Гачечиладзе

2021 ◽  
Vol 20 (66) ◽  
pp. 15-23
Author(s):  
Yu Baranov ◽  
◽  
V Demchenko ◽  
Ie Zajets ◽  
S Olszewski ◽  
...  

A review of analytical methods for the determination of herbicide residues from the group of nitrodiphenyl ethers in the environment and agricultural products, developed and validated a method for oxyfluorfen determination in soybean grain and oil method GC/ECD, which meets regulatory requirements and solves the problem of toxicant control in the above matrices. The developed method uses modern methods of sample preparation, identification and quantification of oxyfluorfen (selective extraction, capillary gas-liquid chromatography (GC/ECD GC/MS). The method is validated according to EU requirements) (SANTE/12682/2019 quality control and analytical validation procedures for pesticide residues analysis in food and feed). Key words: gas-liquid chromatography, mass spectrometry, herbicides, nitrodiphenyl ethers, control, residual amounts.


Sign in / Sign up

Export Citation Format

Share Document