scholarly journals SARS-COV2 Envelope Protein (E) interacts with the Lysophosphatidic Acid Receptor 1 (LPAR1) from humans

2020 ◽  
Author(s):  
GIRISH NALLUR

Abstract A proteomic screen of human proteins interacting with the SARS-COV2 Envelope (E) protein identified LPAR1 as a strong candidate. Physical association of E protein and LPAR1 was confirmed by co-immunoprecipitation and cell surface staining. LPAR1-E protein interaction was confirmed in all eight human cell lines tested. Many additional proteins participating in the E protein interactions network were also enriched from each of the cell lines, some of which were cell type specific. These findings suggest that LPAR1 is likely a cell surface receptor for the E protein, and pave the way for follow-on studies aimed at understanding the biological significance of the interactions in SARS-COV disease, including the signaling mechanisms.

2012 ◽  
Vol 93 (1) ◽  
pp. 72-82 ◽  
Author(s):  
Daniel Watterson ◽  
Bostjan Kobe ◽  
Paul R. Young

The dengue virus (DENV) envelope (E) protein mediates virus entry into cells via interaction with a range of cell-surface receptor molecules. Cell-surface glycosaminoglycans (GAGs) have been shown to play an early role in this interaction, and charged oligosaccharides such as heparin bind to the E protein. We have examined this interaction using site-directed mutagenesis of a recombinant form of the putative receptor-binding domain III of the DENV-2E protein expressed as an MBP (maltose-binding protein)-fusion protein. Using an ELISA-based GAG-binding assay, cell-based binding analysis and antiviral-activity assays, we have identified two critical residues, K291 and K295, that are involved in GAG interactions. These studies have also demonstrated differential binding between mosquito and human cells.


2006 ◽  
Vol 74 (1) ◽  
pp. 49-55 ◽  
Author(s):  
David A. G. Skibinski ◽  
Christophe Genisset ◽  
Silvia Barone ◽  
John L. Telford

ABSTRACT There are two alleles, m1 and m2, of the midregion of the vacuolating cytotoxin gene (vacA) of Helicobacter pylori which code for toxins with different cell specificities. Here we describe the construction of five chimeric strains in which regions of vacA were exchanged between the two genotypes. By analyzing the toxicity of these strains for HeLa and RK13 cells we have confirmed that a 148-amino-acid region determines the phenotypic differences between the two forms of the protein and that this entire region is important for cytotoxicity. Furthermore, we have used our chimeric strains to investigate whether variations in the midregion of VacA have an effect on phorbol 12-myristate 13-acetate (PMA)-induced VacA sensitivity in HL-60 cells. The PMA-induced VacA sensitivity of HL-60 cells has been previously associated with the appearance of the cell surface receptor protein tyrosine phosphatase beta (RPTPβ). Our data indicate that both the m1 and m2 forms of VacA are able to utilize RPTPβ, and the cell-specific phenotype of the midregion is independent of the presence of RPTPβ. It appears that another as-yet-unidentified receptor exists in HL-60 cells that accounts for the m2 phenotype in this cell line. Also, by studying the effect of PMA on levels of RPTPβ in other cell lines and toxicity of VacA in these cell lines we have shown that RPTPβ does not play a major role in the vacuolation of HeLa cells.


1978 ◽  
Vol 9 (2) ◽  
pp. 147-156
Author(s):  
Robert E. Williams ◽  
Peter S. Linsley ◽  
Harry G. Rittenhouse ◽  
C. Fred Fox ◽  
Charles W. Boone

2001 ◽  
Vol 1 ◽  
pp. 9-9
Author(s):  
Patrick M. Sexton

Our understanding of G protein-coupled receptor function has recently expanded to encompass novel protein interactions that underlie both cell surface receptor expression and the exhibited phenotype. The most notable examples are those involving receptor activity modifying proteins (RAMPs). RAMP association with the calcitonin receptor-like receptor (CRLR) traffics this receptor to the cell surface, where individual RAMPs dictate the expression of unique phenotypes.


2001 ◽  
Vol 120 (5) ◽  
pp. A18-A19
Author(s):  
B DIECKGRAEFE ◽  
C HOUCHEN ◽  
H ZHANG

1985 ◽  
Vol 248 (6) ◽  
pp. H907-H913 ◽  
Author(s):  
L. J. Heller ◽  
R. A. Olsson

This study was designed to characterize adenosine's negative chronotropic effect on ventricular pacemakers. The spontaneous beating rate of isolated, isovolumic rat ventricular preparations perfused with Krebs-Henseleit solution decreased as the adenosine concentration was increased [log M effective concentration 50% (EC50) = -5.22 +/- 0.17]. The lack of effect of propranolol or atropine on this adenosine response eliminates the involvement of endogenous neurotransmitters. Support for the involvement of an external cell surface receptor was provided by findings that theophylline and 8-(4-sulfophenyl)theophylline, an analogue thought to act solely at the cell surface, significantly increased the adenosine log M EC50 to -3.94 +/- 0.22 and -3.61 +/- 0.22, respectively. An increase in spontaneous beating rate induced by theophylline, but not by its analogue, was blocked by the addition of propranolol. The relative chronotropic potency of the adenosine analogues R-PIA, S-PIA, and NECA suggests that the cell surface receptors may be of the Ri type. The negative chronotropic effects of adenosine and its analogues occurred at concentrations that had no effect on the developed pressure of the paced preparation. Electrocardiographic evaluations indicate that at high agonist concentrations, there was an abrupt alteration in electrical properties of the preparation, which could be blocked by theophylline and its analogue.


Sign in / Sign up

Export Citation Format

Share Document