scholarly journals Sex-Dependent Differences in the Secretome of Human Endothelial Cells

2020 ◽  
Author(s):  
Maria Grazia Cattaneo ◽  
Cristina Banfi ◽  
Maura Brioschi ◽  
Donatella Lattuada ◽  
Lucia M. Vicentini

Abstract Background: Cellular sex has been rarely considered as a biological variable in preclinical research, even when the pathogenesis of diseases with predictable sex differences is studied. In this perspective, proteomics, and ‘omics approaches in general, can provide powerful tools to obtain comprehensive cellular maps, thus favoring the discovery of still unknown sex-biased physio-pathological mechanisms.Methods: We performed proteomic and gene ontology (GO) analyses of secretome from human serum-deprived male and female endothelial cells (ECs) followed by ELISA validation. Apoptosis was detected by FACS and western blot techniques, and efferocytosis through the ability of the macrophage cell line RAW-264.7 to engulf apoptotic ECs. Protein expression and silencing efficacy were assessed by RT-qPCR. Results: Proteomic and GO analyses of the secretome from starved human male and female ECs demonstrated a significant enrichment in proteins related to cellular responses to stress and to the regulation of apoptosis in the secretome of male ECs. Accordingly, a higher percentage of male ECs underwent apoptosis in response to serum deprivation in comparison to female ECs. Among the secreted proteins, we reliably found higher levels of PTX3 in the male EC secretome. The silencing of PTX3 proved that male ECs were dependent on its expression to properly carry out the efferocytotic process. At variance, female EC efferocytosis was independent of PTX3 expression. Conclusions: Our results demonstrated that serum-starved male and female ECs possess different secretory phenotypes that might take part in the sex-biased response to cellular stress. We identified PTX3 as a crucial player in the male-specific endothelial response to an apoptotic trigger. This novel and sex-related role for secreted proteins, and mainly for PTX3, may open the way to the discovery of still unknown sex-specific mechanisms and pharmacological targets for the prevention and treatment of endothelial dysfunction at the onset of atherosclerosis and cardiovascular disease.

2020 ◽  
Author(s):  
Maria Grazia Cattaneo ◽  
Cristina Banfi ◽  
Maura Brioschi ◽  
Donatella Lattuada ◽  
Lucia M. Vicentini

Abstract Background: Cellular sex has been rarely considered as a biological variable in preclinical research, even when the pathogenesis of diseases with predictable sex differences is studied. In this perspective, proteomics, and ‘omics approaches in general, can provide powerful tools to obtain comprehensive cellular maps, thus favoring the discovery of still unknown sex-biased physio-pathological mechanisms.Methods: We performed proteomic and gene ontology (GO) analyses of secretome from human serum-deprived male and female endothelial cells (ECs) followed by ELISA validation. Apoptosis was detected by FACS and western blot techniques, and efferocytosis through the ability of the macrophage cell line RAW-264.7 to engulf apoptotic ECs. PTX3 mRNA levels were measured by RT-qPCR. Results: Proteomic and GO analyses of the secretome from starved human male and female ECs demonstrated a significant enrichment in proteins related to cellular responses to stress and to the regulation of apoptosis in the secretome of male ECs. Accordingly, a higher percentage of male ECs underwent apoptosis in response to serum deprivation in comparison to female ECs. Among the secreted proteins, we reliably found higher levels of PTX3 in the male EC secretome. The silencing of PTX3 suggests that male ECs were dependent on its expression to properly carry out the efferocytotic process. At variance, female EC efferocytosis seems to be independent on PTX3 expression. Conclusions: Our results demonstrated that serum-starved male and female ECs possess different secretory phenotypes that might take part in the sex-biased response to cellular stress. We identified PTX3 as a crucial player in the male-specific endothelial response to an apoptotic trigger. This novel and sex-related role for secreted proteins, and mainly for PTX3, may open the way to the discovery of still unknown sex-specific mechanisms and pharmacological targets for the prevention and treatment of endothelial dysfunction at the onset of atherosclerosis and cardiovascular disease.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria Grazia Cattaneo ◽  
Cristina Banfi ◽  
Maura Brioschi ◽  
Donatella Lattuada ◽  
Lucia M. Vicentini

Abstract Background Cellular sex has rarely been considered as a biological variable in preclinical research, even when the pathogenesis of diseases with predictable sex differences is studied. In this perspective, proteomics, and “omics” approaches in general, can provide powerful tools to obtain comprehensive cellular maps, thus favoring the discovery of still unknown sex-biased physio-pathological mechanisms. Methods We performed proteomic and Gene Ontology (GO) analyses of the secretome from human serum-deprived male and female endothelial cells (ECs) followed by ELISA validation. Apoptosis was detected by FACS and Western blot techniques and efferocytosis through the ability of the macrophage cell line RAW 264.7 to engulf apoptotic ECs. PTX3 mRNA levels were measured by RT-qPCR. Results Proteomic and GO analyses of the secretome from starved human male and female ECs demonstrated a significant enrichment in proteins related to cellular responses to stress and to the regulation of apoptosis in the secretome of male ECs. Accordingly, a higher percentage of male ECs underwent apoptosis in response to serum deprivation in comparison with female ECs. Among the secreted proteins, we reliably found higher levels of PTX3 in the male EC secretome. The silencing of PTX3 suggested that male ECs were dependent on its expression to properly carry out the efferocytotic process. At variance, female EC efferocytosis seemed to be independent on PTX3 expression. Conclusions Our results demonstrated that serum-starved male and female ECs possess different secretory phenotypes that might take part in the sex-biased response to cellular stress. We identified PTX3 as a crucial player in the male-specific endothelial response to an apoptotic trigger. This novel and sex-related role for secreted proteins, and mainly for PTX3, may open the way to the discovery of still unknown sex-specific mechanisms and pharmacological targets for the prevention and treatment of endothelial dysfunction at the onset of atherosclerosis and cardiovascular disease.


2020 ◽  
Author(s):  
Maria Grazia Cattaneo ◽  
Cristina Banfi ◽  
Maura Brioschi ◽  
Donatella Lattuada ◽  
Lucia M. Vicentini

Abstract Background: Cellular sex has rarely been considered as a biological variable in preclinical research, even when the pathogenesis of diseases with predictable sex differences is studied. In this perspective, proteomics, and ‘omics’ approaches in general, can provide powerful tools to obtain comprehensive cellular maps, thus favoring the discovery of still unknown sex-biased physio-pathological mechanisms.Methods: We performed proteomic and gene ontology (GO) analyses of secretome from human serum-deprived male and female endothelial cells (ECs) followed by ELISA validation. Apoptosis was detected by FACS and Western blot techniques, and efferocytosis through the ability of the macrophage cell line RAW-264.7 to engulf apoptotic ECs. PTX3 mRNA levels were measured by RT-qPCR. Results: Proteomic and GO analyses of the secretome from starved human male and female ECs demonstrated a significant enrichment in proteins related to cellular responses to stress and to the regulation of apoptosis in the secretome of male ECs. Accordingly, a higher percentage of male ECs underwent apoptosis in response to serum deprivation in comparison to female ECs. Among the secreted proteins, we reliably found higher levels of PTX3 in the male EC secretome. The silencing of PTX3 suggested that male ECs were dependent on its expression to properly carry out the efferocytotic process. At variance, female EC efferocytosis seemed to be independent on PTX3 expression. Conclusions: Our results demonstrated that serum-starved male and female ECs possess different secretory phenotypes that might take part in the sex-biased response to cellular stress. We identified PTX3 as a crucial player in the male-specific endothelial response to an apoptotic trigger. This novel and sex-related role for secreted proteins, and mainly for PTX3, may open the way to the discovery of still unknown sex-specific mechanisms and pharmacological targets for the prevention and treatment of endothelial dysfunction at the onset of atherosclerosis and cardiovascular disease.


PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0189528 ◽  
Author(s):  
Claudia Vanetti ◽  
Francesco Bifari ◽  
Lucia M. Vicentini ◽  
Maria Grazia Cattaneo

1990 ◽  
Vol 63 (02) ◽  
pp. 303-311
Author(s):  
Tone Børsum

SummaryHuman endothelial cells isolated from umbilical cordswere solubilized in Triton X-100 and examined by crossedimmunoelec-trophoresis using rabbit antiserum against endothelial cells. Endogenous labelling of the endothelialcell proteins with 14Cmannose followed by crossed immunoelectrophoresis and autoradiography revealed about 10 immunoprecipitates. Four of these endothelial cell glycoproteins were labelled by lactoperoxidase catalyzed iodination and thus were surface located. Three of the surface located glycoproteins showed reduced electrophoretic mobility after incubation of the endothelial cells with neuraminidase and were therefore sialoglycoproteins. Amphiphilicity of endothelial cell glycoproteins was studied by crossed hydrophobic interaction immunoelectrophoresis with phenyl-Sepharose in the intermediate gel. Amphiphilic proteins also show increasing electrophoretic migration velocity with decreasing concentration of Triton X-100 in the first dimension gels. Five of the endothelial cell glycoproteins were shown to be amphiphilic using these two techniques.Two monoclonal antibodies against the platelet glycoprotein complex Ilb-IIIa and glycoprotein IlIa, respectively, reacted with the same precipitate of endothelial cells. When a polyclonal antibody against the platelet glycoprotein complex Ilb-IIIa was incorporated into the intermediate gel the position of two endothelial cell precipitates were lowered. One of these was a sialoglycoprotein.


1989 ◽  
Vol 62 (02) ◽  
pp. 699-703 ◽  
Author(s):  
Rob J Aerts ◽  
Karin Gillis ◽  
Hans Pannekoek

SummaryIt has recently been shown that the fibrinolytic components plasminogen and tissue-type plasminogen activator (t-PA) both bind to cultured human umbilical vein endothelial cells (HUVEC). After cleavage of t-PA by plasmin, “single-chain” t-PA (sct-PA) is converted into “two-chain” t-PA (tct-PA), which differs from the former in a number of respects. We compared binding of sct-PA and tct-PA to the surface of HUVEC. Removal of t-PA bound to HUVEC by a mild treatment with acid and a subsequent quantification of eluted t-PA both by activity- and immunoradiometric assays revealed that, at concentrations between 10 and 500 nM, HUVEC bind about 3-4 times more sct-PA than tct-PA. At these concentrations, both sct-PA and tct-PA remain active when bound to HUVEC. Mutual competition experiments showed that sct-PA and tct-PA can virtually fully inhibit binding of each other to HUVEC, but that an about twofold higher concentration of tct-PA is required to prevent halfmaximal binding of sct-PA than visa versa. These results demonstrate that sct-PA and tct-PA bind with different affinities to the same binding sites on HUVEC.


1996 ◽  
Vol 76 (02) ◽  
pp. 258-262 ◽  
Author(s):  
Robert I Roth

SummaryHuman endothelial cells, when incubated with bacterial endotoxin (lipopolysaccharide, LPS), modify their surface in association with prominent production of procoagulant tissue factor (TF) activity. This deleterious biological effect of LPS has been shown previously to be enhanced approximately 10-fold by the presence of hemoglobin (Hb), a recently recognized LPS binding protein that causes disaggregation of LPS and increases the biological activity of LPS in a number of in vitro assays. The present study was performed to test the hypothesis that Hb enhances the LPS-induced procoagulant activity of human umbilical vein endothelial cells (HUVEC) by increasing LPS binding to the cells. The binding of 3H-LPS to HUVEC was determined in the absence or presence of Hb or two other known LPS-binding proteins, human serum albumin (HSA) and IgG. LPS binding was substantially increased in the presence of Hb, in a Hb concentration-dependent manner, but was not increased by HSA or IgG. Hb enhancement of LPS binding was observed in serum-free medium, indicating that there was no additional requirement for any of the serum factors known to participate in the interaction of LPS with cells (e.g., lipopolysaccharide (LPS)-binding protein (LBP) and soluble CD14 (sCD14)). Hb enhancement of LPS binding also was observed in the more physiologic condition of 100% plasma. LPS-induced TF activity was stimulated by Hb, but not by HSA or IgG. In serum-free medium, TF activity was not stimulated under any of the conditions tested. Ultrafiltration of LPS was dramatically increased after incubation with Hb but not with HSA or IgG, suggesting that LPS disaggregation by Hb was responsible for the enhanced binding of LPS to HUVEC and the subsequent stimulation of TF activity.


1995 ◽  
Vol 74 (02) ◽  
pp. 698-703 ◽  
Author(s):  
Catherine Lenich ◽  
Ralph Pannell ◽  
Victor Gurewich

SummaryFactor XII has long been implicated in the intrinsic pathway of fibrinolysis, but the mechanism by which it triggers plasminogen activation and targets fibrinolysis has not been established. In the present study, the assembly and function of activated Factor XII (F.XIIa), prourokinase (pro-u-PA), high molecular weight kininogen (H-kininogen), and prekallikrein on human umbilical vein endothelial cells (HUVEC) was investigated. 125I-prekallikrein was shown to bind to HUVEC via receptor-bound H-kininogen in the presence of 50 μM ZnCl2. After the addition of F.XIIa, 78% of the 125I-prekallikrein initially bound to HUVEC was converted to 125I-kallikrein. However, only 6% of the HUVEC-bound 125I-pro-u-PA was thereby activated. This discrepancy was shown to be related to rapid dissociation (>50% within 15 min) of prekallikrein/kallikrein, but not pro-u-PA, from HUVEC. Increasing the level of cell-bound kallikrein increased the portion of cell-bound pro-u-PA activated, indicating that their co-localization was important for this pathway. Finally, F.XIIa was shown to trigger plasminogen activation on HUVEC via this pathway. This assembly of reactants on the endothelium suggests a mechanism whereby local fibrinolysis may be triggered by blood coagulation.


1983 ◽  
Vol 49 (02) ◽  
pp. 069-072 ◽  
Author(s):  
U L H Johnsen ◽  
T Lyberg ◽  
K S Galdal ◽  
H Prydz

SummaryHuman umbilical vein endothelial cells in culture synthesize thromboplastin upon stimulation with phytohaemagglutinin (PHA) or the tumor promotor 12-O-tetradecanoyl-phorbol-13-acetate (TPA). The thromboplastin activity is further strongly enhanced in a time dependent reaction by the presence of gel-filtered platelets or platelet aggregates. This effect was demonstrable at platelet concentrations lower than those normally found in plasma, it may thus be of pathophysiological relevance. The thromboplastin activity increased with increasing number of platelets added. Cycloheximide inhibited the increase, suggesting that de novo synthesis of the protein component of thromboplastin, apoprotein III, is necessary.When care was taken to remove monocytes no thromboplastin activity and no apoprotein HI antigen could be demonstrated in suspensions of gel-filtered platelets, platelets aggregated with thrombin or homogenized platelets when studied with a coagulation assay and an antibody neutralization technique.


Sign in / Sign up

Export Citation Format

Share Document