scholarly journals Utilizing Matrix Completion for Simulation and Optimization of Water Distribution Networks

Author(s):  
Alaa Jamal ◽  
Mashor Housh

Abstract Simulation of Water Distribution Networks (WDNs) constitutes a key element for the planning and management of water supply systems. This simulation involves estimating the flows and pressures by solving a linear set of mass conservation equations and a nonlinear set of energy conservation equations. The literature presents different formulations of heads-flows equations to derive the flows and heads in WDN. These formulations differ in terms of dimensionality, computational cost, and solution accuracy. Whereas this problem has been the subject of active research in the past, in the last decades a state of stagnation was reached and no new formulations were introduced. In this study, we propose a novel formulation that utilizes a matrix completion technique to construct a reduced-size nonlinear system of equations that guarantees both mass and energy conservation. Unlike former formulations that rely on the topology of the network, in the proposed method we employ a matrix completion technique in which arbitrary entries are added to the equation system to facilitate its solution. The advantages of the proposed method are demonstrated in simulation and optimization settings. In the former, the method demonstrates improved scalability and accuracy as compared with other widely known formulations. In the latter, the new formulation leads to smaller optimization problems, which are otherwise intractable when the classical formulation is used. Our results reopen an old debate on the best formulation for WDN simulation and optimization tasks and show that the matrix completion technique is a viable solution option for the problem.

2003 ◽  
Vol 3 (1-2) ◽  
pp. 95-102 ◽  
Author(s):  
T. Massoud ◽  
A. Zia

In this paper the hydraulic performance of water distribution networks is evaluated by assessing the head values in demand points and velocities in pipes. To obtain the hydraulic parameters a head-driven simulation method is used. In this method, nodal outflows are not fixed and vary with nodal heads. Considering the possibility of a range of demand variations and mechanical and hydraulic failures in the system, nodal heads and pressure dependent outflows are obtained. Then, by using a mathematical function, the performance of the system is realistically evaluated. As expected, the level of service in the system is decreased when head and velocity values are out of the standard ranges. Also, the reliability of a water distribution network is calculated using the ratio of the pressure-dependent outflows to the demand values considering the probability of pipe failures. Comparing the level of service index and reliability applications on a test network, it can be concluded that the reliability method is not sensitive to high-pressure values in the system. However, in this situation the performance index shows a lower level of service in the network. This means that high reliability values guarantee a good connectivity and enough pressure to satisfy the required nodal outflows, although pressure values higher than the standard codes, which lead to more leaks and bursts, are not acceptable in water supply systems. Therefore, the existing definitions of reliability are not comprehensive enough to realistically evaluate performance of the system. Using the level of service index and the head-driven simulation method, the network performance under different normal and abnormal conditions can be appropriately evaluated for water companies.


2018 ◽  
Vol 27 (4) ◽  
pp. 1425-1432 ◽  
Author(s):  
Jorge Ruiz-Vanoye ◽  
Ricardo Barrera-Cámara ◽  
Ocotlán Díaz-Parra ◽  
Alejandro Fuentes-Penna ◽  
Joaquín Pérez Ortega ◽  
...  

Author(s):  
Tiku T. Tanyimboh

Abstract Genetic algorithms have been shown to be highly effective for optimization problems in various disciplines, and binary coding is generally adopted as it is straightforward to implement and lends itself to problems with discrete-valued decision variables. However, a difficulty associated with binary coding is the existence of redundant codes that do not correspond to any element in the finite discrete set that the encoded parameter belongs to. A common technique used to address redundant binary codes is to discard the chromosomes in which they occur. Effective alternatives to the outright removal of redundant codes are lacking in the literature. This article presents illustrative examples based on the problem of optimizing the design of water distribution networks. Two benchmark networks in the literature and two different multi-objective design optimization models were considered. Different fixed mapping schemes gave significantly different solutions in the search space. The main inference from the results is that mapping schemes that improved diversity in the population of solutions achieved better results, which may pave the way for the development of practical and effective mapping schemes.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 443
Author(s):  
Ildeberto Santos-Ruiz ◽  
Francisco-Ronay López-Estrada ◽  
Vicenç Puig ◽  
Guillermo Valencia-Palomo ◽  
Héctor-Ricardo Hernández

This paper presents a method for optimal pressure sensor placement in water distribution networks using information theory. The criterion for selecting the network nodes where to place the pressure sensors was that they provide the most useful information for locating leaks in the network. Considering that the node pressures measured by the sensors can be correlated (mutual information), a subset of sensor nodes in the network was chosen. The relevance of information was maximized, and information redundancy was minimized simultaneously. The selection of the nodes where to place the sensors was performed on datasets of pressure changes caused by multiple leak scenarios, which were synthetically generated by simulation using the EPANET software application. In order to select the optimal subset of nodes, the candidate nodes were ranked using a heuristic algorithm with quadratic computational cost, which made it time-efficient compared to other sensor placement algorithms. The sensor placement algorithm was implemented in MATLAB and tested on the Hanoi network. It was verified by exhaustive analysis that the selected nodes were the best combination to place the sensors and detect leaks.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1546 ◽  
Author(s):  
Enrico Creaco ◽  
Giuseppe Pezzinga

This Editorial presents a representative collection of 10 papers, presented in the Special Issue on Advances in Water Distribution Networks (WDNs), and frames them in the current research trends. Four topics are mainly explored: simulation and optimization modelling, topology and partitioning, water quality, and service effectiveness. As for the first topic, the following aspects are dealt with: pressure-driven formulations, algorithms for the optimal location of control valves to minimize leakage, benefits of water discharge prediction for the remote real time control (RTC) of valves, and transients generated by pumps operating as turbines (PATs). In the context of the second topic, a topological taxonomy of WDNs is presented, and partitioning methods for the creation of district metered areas (DMAs) are compared. With regards to the third topic, the vulnerability to trihalomethane is assessed, and a statistical optimization model is presented to minimise heavy metal releases. Finally, the fourth topic focusses on estimation of non-revenue water (NRW), inclusive of leakage and unauthorized consumption, and on assessment of service under intermittent supply conditions.


2020 ◽  
Vol 2 (1) ◽  
pp. 51
Author(s):  
Nikolaos Kourbasis ◽  
Menelaos Patelis ◽  
Stavroula Tsitsifli ◽  
Vasilis Kanakoudis

Water distribution networks suffer from high levels of water losses due to leaks and breaks, mainly due to high operating pressure. One of the most well-known methods to reduce water losses is pressure management. However, when the operating pressure in a water distribution network reduces, the time the water stays within the network (called water age) increases. Increased water age means deteriorated water quality. In this paper, water pressure in relation to water age is addressed in a water distribution network in Greece. Using simulation and optimization tools, the optimum solution is found to reduce water age and operating pressure at the same time. In addition, District Metered Areas are formed and water age is optimized.


Sign in / Sign up

Export Citation Format

Share Document