scholarly journals DOA estimation method of spatial spectrum product for distributed coprime linear array

Author(s):  
Na WANG ◽  
Xuanzhi ZHAO ◽  
Zengli LIU ◽  
Jingjing ZHANG

Coprime array isAsparse array composed of two uniform linear arrays with different spacing. When the two subarrays are inAnon-coherent distributed configuration, the direction of arrival (DOA) method based on the covariance analysis of the complete coprime array is no longer effective. According to the essential attribute that the distance between the elements of two subarrays can eliminate the angle ambiguity, based on the mathematical derivation, Aspatial spectral product DOA estimation method for incoherent distributed coprime arrays is proposed. Firstly, the spatial spectrum of each subarray is calculated by using the snapshot data of each subarray, and then the DOA estimation is realized by multiplying the spatial spectrum of each subarray. The simulation results show that the estimation accuracy and angle resolution of the present method are better than those of the traditional ambiguity resolution methods, and the estimation performance is good in the mutual coupling and low SNR environment, with the good adaptability and stability. Moreover, by using the flexibility of distributed array, the matching error is effectively solved through the rotation angle.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhang Chen ◽  
Hao Wu ◽  
Yongxiang Liu

In this article, a difference-coarray-based direction of arrival (DOA) method is introduced, which utilizes the uniform linear array (ULA) in a novel fashion to address the problem of DOA estimation for coherent signals. Inspired by the coarray-based estimators employed in cases of sparse arrays, we convert the sample covariance matrix of the observed signals into the difference coarray domain and process the signals using a spatial smoothing technique. The proposed method exhibits good accuracy and robustness in both the uncorrelated and coherent cases. Numerical simulations verify that the ULA difference coarray- (UDC-) based method can achieve good DOA estimation accuracy even when the SNR is very low. In addition, the UDC-based method is insensitive to the number of snapshots. Under extremely challenging conditions, the proposed UDC-ES-DOA method is preferred because of its outstanding robustness, while the UDC-MUSIC method is suitable for most moderate cases of lower complexity. Due to its demonstrated advantages, the proposed method is a promising and competitive solution for practical DOA estimation, especially for low-SNR or snapshot-limited applications.


Author(s):  
Fei Zhang ◽  
Zijing Zhang ◽  
Aisuo Jin ◽  
Chuantang Ji ◽  
Yi Wang

AbstractAiming at the problem that traditional direction of arrival (DOA) estimation methods cannot handle multiple sources with high accuracy while increasing the degrees of freedom (DOF), a new method for 2-D DOA estimation based on coprime array MIMO radar (SA-MIMO-CA) is proposed. First of all, in order to ensure the accuracy of multi-source estimation when the number of elements is finite, a new coprime array model based on MIMO (MIMO-CA) is proposed. This method is based on a new MIMO array-based co-prime array model (MIMO-CA), which improves the accuracy of multi-source estimation when the number of array elements is limited, and obtains a larger array aperture with a smaller number of array elements, and improves the estimation accuracy of 2-D DOA. Finally, the effectiveness and reliability of the proposed SM-MIMO-CA method in improving the DOF of array and DOA accuracy are verified by experiments.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jianfeng Li ◽  
Xiong Xu ◽  
Ping Li ◽  
Qiting Zhang

A partial dictionary based direction of arrival (DOA) estimation method which addresses the off-grid problem and exploits combined coprime and nested array (CCNA) is proposed. Compared to general coprime array, CCNA yields two sparse coprime subarrays in the coarray domain by adding a third subarray in the physical-array domain. To ensure the DOA estimation performance, the subarray with larger aperture is chosen, and the cyclic phase ambiguity caused by the sparse subarray allows partial dictionary covering arbitrary cycle to represent the whole atoms, and then, the off-grid sparse reconstruction method is developed to amend the grid mismatch. After the sparse recovery and off-grid compensation, ambiguous DOA estimations can be eliminated by substituting the estimations into the whole virtual array. Multiple simulations verify that the proposed algorithm outperforms the other state-of-the-art methods in terms of DOA estimation accuracy and angular resolution.


2021 ◽  
Author(s):  
Ye Yuan ◽  
Shuang Wu ◽  
Yong Yang ◽  
Naichang Yuan

Abstract In this paper, we propose an improved convolutional neural network (CNN) to solve the multi-DOA estimation problem. We use Khatri-Rao (KR) product to obtain the KR image tensor of covariance matrix and use the proposed estimation CNN to process the tensor. In order to increase the generalization of the proposed CNN and adapt the multi-label classification problem, we use the curriculum learning scheme (CLS) and partial label strategy (PLS) to develop an efficient training procedure. We implement several experiments to demonstrate the satisfying performance of the proposed estimation method. The simulation results show that our proposed method can finish the high resolution multi-DOA estimation use only a few sensors. Furthermore, the proposed method can obtain high estimation accuracy under low SNR situations and use fewer snapshots.


2021 ◽  
Author(s):  
Fei Zhang ◽  
Zijing Zhang ◽  
Aisuo Jin ◽  
Chuantang Ji ◽  
Yi Wang

Abstract Aiming at the problem that traditional Direction of Arrival (DOA) estimation methods cannot handle multiple sources with high accuracy while increasing the degree of freedom, a new method of 2-D DOA estimation based on coprime array MIMO Radar (SA-MIMO-CA). Frist of all, in order to ensure the accuracy of multi-source estimation when the number of elements is finite, a new coprime array model based on MIMO (MIMO-CA) is proposed. The array model uses a special irregular array as the transmitting array and a uniform linear array as the receiving array. Besides, in order to reduce complexity and improve the accuracy of two-dimensional DOA estimation, a new two-dimensional DOA estimation method based on sparse array is proposed. This method uses the sparse array topology of virtual array elements to analyze a larger number of information sources, and combines the compressed sensing method to process the sparse array, and obtains a larger array aperture with a smaller number of array elements, and improves the resolution of the azimuth angle. This method improves the DOA estimation accuracy and reduces the complexity. Finally, experiments verify the effectiveness and reliability of the SA-MIMO-CA method in improving the degree of freedom of the array, reducing the complexity, and improving the accuracy of the DOA.


2021 ◽  
Vol 13 (4) ◽  
pp. 803
Author(s):  
Lingchen Lin ◽  
Kunyong Yu ◽  
Xiong Yao ◽  
Yangbo Deng ◽  
Zhenbang Hao ◽  
...  

As a key canopy structure parameter, the estimation method of the Leaf Area Index (LAI) has always attracted attention. To explore a potential method to estimate forest LAI from 3D point cloud at low cost, we took photos from different angles of the drone and set five schemes (O (0°), T15 (15°), T30 (30°), OT15 (0° and 15°) and OT30 (0° and 30°)), which were used to reconstruct 3D point cloud of forest canopy based on photogrammetry. Subsequently, the LAI values and the leaf area distribution in the vertical direction derived from five schemes were calculated based on the voxelized model. Our results show that the serious lack of leaf area in the middle and lower layers determines that the LAI estimate of O is inaccurate. For oblique photogrammetry, schemes with 30° photos always provided better LAI estimates than schemes with 15° photos (T30 better than T15, OT30 better than OT15), mainly reflected in the lower part of the canopy, which is particularly obvious in low-LAI areas. The overall structure of the single-tilt angle scheme (T15, T30) was relatively complete, but the rough point cloud details could not reflect the actual situation of LAI well. Multi-angle schemes (OT15, OT30) provided excellent leaf area estimation (OT15: R2 = 0.8225, RMSE = 0.3334 m2/m2; OT30: R2 = 0.9119, RMSE = 0.1790 m2/m2). OT30 provided the best LAI estimation accuracy at a sub-voxel size of 0.09 m and the best checkpoint accuracy (OT30: RMSE [H] = 0.2917 m, RMSE [V] = 0.1797 m). The results highlight that coupling oblique photography and nadiral photography can be an effective solution to estimate forest LAI.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hao Li ◽  
Weijia Cui ◽  
Bin Ba ◽  
Haiyun Xu ◽  
Yankui Zhang

The performance of direction-of-arrival (DOA) estimation for sparse arrays applied to the distributed source is worse than that applied to the point source model. In this paper, we introduce the coprime array with a large array aperture into the DOA estimation algorithm of the exponential-type coherent distributed source. In particular, we focus on the fourth-order cumulant (FOC) of the received signal which can provide more useful information when the signal is non-Gaussian than when it is Gaussian. The proposed algorithm extends the array aperture by combining the sparsity of array space domain with the fourth-order cumulant characteristics of signals, which improves the estimation accuracy and degree of freedom (DOF). Firstly, the signal-received model of the sparse array is established, and the fourth-order cumulant matrix of the received signal of the sparse array is calculated based on the characteristics of distributed sources, which extend the array aperture. Then, the virtual array is constructed by the sum aggregate of physical array elements, and the position set of its maximum continuous part array element is obtained. Finally, the center DOA estimation of the distributed source is realized by the subspace method. The accuracy and DOF of the proposed algorithm are higher than those of the distributed signal parameter estimator (DSPE) algorithm and least-squares estimation signal parameters via rotational invariance techniques (LS-ESPRIT) algorithm when the array elements are the same. Complexity analysis and numerical simulations are provided to demonstrate the superiority of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Feng Zhao ◽  
Xia Hao ◽  
Hongbin Chen

The estimation accuracy of direction-of-departure (DOD) and direction-of-arrival (DOA) is reduced because of Doppler shifts caused by the high-speed moving sources. In this paper, an improved DOA estimation method which combines the forward-backward spatial smoothing (FBSS) technique with the MUSIC algorithm is proposed for virtual MIMO array signals in high mobility scenarios. Theoretical analysis and experiment results demonstrate that the resolution capability can be significantly improved by using the proposed method compared to the MUSIC algorithm for the moving sources with limited array elements, especially the DOA which can still be accurately estimated when the sources are much closely spaced.


2022 ◽  
Author(s):  
Mengmeng Li

In this paper, we present a metasurface-based Direction of Arrival (DoA) estimation method that exploits the properties of space-time modulated reflecting metasurfaces to estimate in real-time the impinging angle of an illuminating monochromatic plane wave. The approach makes use of the amplitude unbalance of the received fields at broadside at the frequencies of the two first-order harmonics generated by the interaction between the incident plane wave and the modulated metasurface. Here, we first describe analytically how to generate the desired higher-order harmonics in the reflected spectrum and how to realize the breaking of the spatial symmetry of each order harmonic scattering pattern. Then, the one dimensional (1D) omnidirectional incident angle can be analytically computed using +1st and -1st order harmonics. The approach is also extended to 2D DoA estimation by using two orthogonally arranged 1D DoA modulation arrays. The accuracy of 1D DoA estimation is verified through full-wave numerical simulations. Compared to conventional DoA estimation methods, the proposed approach simplifies the computation and hardware complexity, ensuring at the same time estimation accuracy. The proposed method may have potential applications in wireless communications, target recognition, and identification.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Panhe Hu ◽  
Qinglong Bao ◽  
Zengping Chen

Direction-of-arrival (DOA) estimation in multipath environment is an important issue for passive bistatic radar (PBR) using frequency agile phased array VHF radar as illuminator of opportunity. Under such scenario, the main focus of this paper is to cope with the closely spaced uncorrelated and coherent signals in low signal-to-noise ratio and limited snapshots. Making full use of the characteristics of moduli of eigenvalues, the DOAs of the uncorrelated signals are firstly estimated. Afterwards, their contributions are eliminated by means of spatial difference technique. Finally, in order to improve resolution and accuracy DOA estimation of remaining coherent signals while avoiding the cross-terms effect, a new beamforming solution based iterative adaptive approach (IAA) is proposed to deal with a reconstructed covariance matrix. The proposed method combines the advantages of both spatial difference method and the IAA algorithm while avoiding their shortcomings. Simulation results validate its effectiveness; meanwhile, the good performances of the proposed method in terms of resolution probability, detection probability, and estimation accuracy are demonstrated by comparison with the existing methods.


Sign in / Sign up

Export Citation Format

Share Document