scholarly journals Fabrication of C6-Fluorocarbon-Dendrimer Based Superhydrophobic Cotton Fabrics for Multifunctional Aspects

Author(s):  
Md. Ibrahim H. Mondal ◽  
Joykrisna Saha

Abstract C6-Fluorocarbon (FC)-dendrimer has been applied on cotton knit fabric for developing water repellent, self-cleaning, oil-water separation, acid-resistant, antibacterial, UV resistant and flame retardant property while maintaining acceptable levels of comfort for wearers. The C6-Fluorocarbon (FC)-dendrimer coated 100% cotton single jersey knitted fabric samples were prepared using “pad-dry-cure” method, and characterized and tested for comfort and other textile properties. The 90 g/L and 100 g/L FC-dendrimer treated cotton fabrics provided excellent water repellency, oil-water separation and self-cleaning performance. But air permeability and thermal conductivity were 13%, 15%, and 40%, 54% lower, respectively, than those of untreated fabrics. The presence of FC-dendrimer in the treated fabric was confirmed by FTIR, SEM, EDS and XRD analyses. SEM analysis was employed to study the morphology of deposited FC-dendrimer particles on the fabric surface. Thermal behaviors were evaluated by TGA and DTA. The FC-dendrimer-treated fabric also showed promise as a UV ray absorber, antimicrobial activity, acid resistance and flame retardant property. Overall, the result suggests that FC-dendrimer can be a valuable ingredient in the manufacture of multifunctional products.

2021 ◽  
Author(s):  
Qingbo Xu ◽  
Xiating Ke ◽  
Zongqian Wang ◽  
Peng Wang ◽  
Changlong Li

Abstract Improving the surface roughness and reducing the surface energy are the main strategies for constructing cotton fabrics with superhydrophobic surface. However, the complex finishing process and poor durability still impede the production and application of superhydrophobic cotton fabrics. Therefore, it is critical to produce superhydrophobic fabrics with excellent durability via a noncomplicated method. In this work, monomers of methyl methacrylate (MMA) and trifluoroethyl methacrylate (TFMA) were polymerized via free radical polymerization to produce a fluoropolymer. Then, the fabric was coated with the fluoropolymer to construct a superhydrophobic surface via the pad-dry-cure technology. The TFMA unit in the fluoropolymer had lower surface energy than the MMA unit. Under the high-temperature curing condition, the MMA unit in the fluoropolymer was grafted onto the cotton fabric via transesterification, and the TFMA was exposed on the fabric surface. The finished fabric showed durable superhydrophobic properties, outstanding oil–water separation properties, and excellent self-cleaning properties. Given the results, the finished fabric has great potential application in clothing and industrial fields.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 442 ◽  
Author(s):  
Mingguang Yu ◽  
Qing Wang ◽  
Wenxin Yang ◽  
Yonghang Xu ◽  
Min Zhang ◽  
...  

In this paper, we present a facile and efficient strategy for the fabrication of magnetic, durable, and superhydrophobic cotton for oil/water separation. The superhydrophobic cotton functionalized with Fe3O4 magnetic nanoparticles was prepared via the in situ coprecipitation of Fe2+/Fe3+ ions under ammonia solution on cotton fabrics using polyvinylpyrrolidone (PVP) as a coupling agent and hydrophobic treatment with tridecafluorooctyl triethoxysilane (FAS) in sequence. The as-prepared cotton demonstrated excellent superhydrophobicity with a water contact angle of 155.6° ± 1.2° and good magnetic responsiveness. Under the control of the external magnetic field, the cotton fabrics could be easily controlled to absorb the oil from water as oil absorbents, showing high oil/water separation efficiency, even in hot water. Moreover, the cotton demonstrated remarkable mechanical durable properties, being strongly friction-resistant against sandpaper and finger wipe, while maintaining its water repellency. This study developed a novel and efficient strategy for the construction of magnetic, durable, and superhydrophobic biomass-based adsorbent for oil/water separation, which can be easily scaled up for practical oil absorption.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 943
Author(s):  
Hua Wang ◽  
Rajnesh Kumar ◽  
Hafeezullah Memon

Oil–water separation is among the critical issues worldwide due to recent massive oil spills. Moreover, domestic and industrial water pollution due to oil discharge affects marine and aquatic life. Cotton is the most predominant fiber globally because of its use as a principal and popular clothing material. Cotton is also the leading raw material for technical and functional textile applications. In this study, the fabric was cured with poly (methyl methacrylate) (PMMA) nanoparticles to develop hydrophobic and oleophilic cotton fabrics. The dehydrating agents, N,N′-dicyclohexylcarbodiimide (DCC) and dimethyl aminopyridine (DMAP), were used to catalyze the esterification. The results proved that the excellent hydrophobicity of modified cotton fabric provides a water contact angle higher than 140°. In addition, Fourier transforms infrared (FTIR) spectroscopy, as well as X-ray photoelectron spectroscopy (XPS) analysis, confirmed the fabric surface modification. Surface morphological analysis by scanning electron microscope (SEM) revealed the uniform rough surface structure of the modified fabric with nano-coating. The modified fabric resulted in the high separation efficiency of oil and water, suggesting this strategy to be suitable for advanced oil–water separation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lizheng Sha ◽  
Chao Ma ◽  
Huifang Zhao ◽  
Supeng Qiu ◽  
Zhongyu Yan ◽  
...  

Abstract Superhydrophobic surfaces have high potential in self-cleaning and oil-water separation applications. We developed a three-step method for the preparation of superhydrophobic filter paper. It involved citric acid (CA) pretreatment to activate cellulose fibers, coating with cellulose nanofibrils/functionalized silica (CNFs/m-SiO2) slurry to increase surface roughness, and grafting of hexadecyltrimethoxysilane (HDTMS) to enhance water resistance. The water contact angle (WCA) and siding angle (SA) of the prepared filter paper reached 151.5° and 7.5°, respectively. The results showed that, compared to the coated filter paper without the added CNFs, the coated paper with CNFs had higher retention of m-SiO2, thus roughness required for superhydrophobic surface was achieved. Further test under frequent abrasion and acid or alkali conditions showed that CA pretreatment improved the durability of superhydrophobic filter paper due to chemical crosslinking between the modified substrate and m-SiO2. Besides, the prepared superhydrophobic filter paper had outstanding self-cleaning property and high oil-water separation efficiency for various oil-water mixtures. Therefore, it is expected to be used for the treatment of oily wastewater.


Cellulose ◽  
2020 ◽  
Vol 27 (15) ◽  
pp. 9005-9026 ◽  
Author(s):  
Lihui Xu ◽  
Yadong Liu ◽  
Xiaoling Yuan ◽  
Jing Wan ◽  
Liming Wang ◽  
...  

2015 ◽  
Vol 2 (14) ◽  
pp. 1500220 ◽  
Author(s):  
Shuhui Li ◽  
Jiangying Huang ◽  
Mingzheng Ge ◽  
Chunyan Cao ◽  
Shu Deng ◽  
...  

2021 ◽  
Author(s):  
Wei xu ◽  
LiHui Xu ◽  
Hong Pan ◽  
Liming Wang ◽  
Yong Shen ◽  
...  

Abstract In this work, robust superhydrophobic cotton fabrics with UV shielding, self-cleaning, photocatalysis, and oil/water separation were successfully prepared based on micro/nano hierarchical ZnO/HNTs (halloysite nanotubes) hybrid particles and silicone elastomer polydimethylsiloxane (PDMS). ZnO/HNTs hybrid particles were prepared by in-situ growth of ZnO nanoparticles on the surface of halloysite nanotubes (HNTs). ZnO/HNTs hybrid particles and PDMS were used to successively coat cotton fabric by dip-coating approach. The coated cotton fabric displayed excellent superhydrophobicity with a water contact angle of 162.5 ± 1° and photocatalytic degradation of methylene blue solution under UV irradiation owing to the roughness and photocatalytic performance provided by micro/nano hierarchical ZnO/HNTs hybrid particles and low surface energy achieved by PDMS. The as-prepared fabric also displayed outstanding self-cleaning and antifouling properties. In addition, due to its both superhydrophobic and superoleophilic characteristics, the as-prepared cotton fabric can be used to separate several oil/water mixtures and showed good recoverability. The superhydrophobic cotton fabric also exhibited excellent UV shielding performance with a large UV protection factor of 1643.28 due to strong ultraviolet-absorption, light scattering and frequent light reflection of ZnO nanoparticles in ZnO/HNTs composites coated on cotton fabric. Importantly, the as-prepared fabric retained superhydrophobic performance after 2000 cycles rubbing, 90h UV illumination, and immersing in acidic and alkali solutions with different pH values ranging from 1 to 14 for 1 h. These characteristics make multifunctional cotton fabrics a satisfactory candidate in various promising fields.


Sign in / Sign up

Export Citation Format

Share Document