Honey Bees Extract Map Coordinates from the Dance

Author(s):  
Zhengwei Wang ◽  
Xiuxian Chen ◽  
Frank Becker ◽  
Uwe Greggers ◽  
Stefan Walter ◽  
...  

Abstract Honeybees communicate locations by the waggle dance, a symbolic form of information transfer. Here we ask whether the recruited bee uses only the indicated course vector or translates it into a location vector on a cognitive map. Recruits were captured on exiting the hive and displaced to distant release sites. Their flights were tracked by radar. Both the vector portions of their flights and the ensuing tortuous search portions were strongly and differentially affected by release site. Search patterns were biased toward the true location of the food and away from the location given by adding release-site displacement to the danced vector. The results imply that the bees recruited by the dance access the indicated location of the food on a shared spatial representation. Thus, the bee dance communicates two messages, a flying instruction and a map location.

2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Parry M. Kietzman ◽  
P. Kirk Visscher

It is known that the honey bee waggle dance communicates the distance and direction of some item of interest, most commonly a food source, to nestmates. Previous work suggests that, in order to successfully acquire the information contained in a dance, other honey bees must follow the dancer from behind. We revisit this topic using updated methodology, including a greater distance from the hive to the feeder, which produced longer, more easily-read dances. Our results are not congruent with those of earlier work, and we did not conclude that honey bees must follow a dancer from behind in order to obtain the dance information. Rather, it is more likely that a follower can successfully acquire a dance’s information regardless of where she may be located about a dancer.


2020 ◽  
Author(s):  
Anissa Kennedy ◽  
Tianfei Peng ◽  
Simone M. Glaser ◽  
Melissa Linn ◽  
Susanne Foitzik ◽  
...  

AbstractCommunication is essential for social animals, but deciding how to utilize information provided by conspecifics is a complex process that depends on environmental and intrinsic factors. Honey bees use a unique form of communication, the waggle dance, to inform nestmates about the location of food sources. However, as in many other animals, experienced individuals often ignore this social information and prefer to rely on prior experiences, i.e. private information. The neurosensory factors that drive the decision to use social information are not yet understood. Here we test whether the decision to use social dance information or private information is linked to gene expression differences in different parts of the nervous system. We trained bees to collect food from sugar water feeders and observed whether they utilize social or private information when exposed to dances for a new food source. We performed transcriptome analysis of four brain parts critical for cognition: the subesophageal ganglion, the central brain, the mushroom bodies, and the antennal lobes but, unexpectedly, detected no differences between social or private information users. In contrast, we found 413 differentially expressed genes in the antennae, suggesting that variation in sensory perception mediate the decision to use social information. Social information users were characterized by the upregulation of dopamine and serotonin genes while private information users upregualted several genes coding for odor perception. These results highlight that decision making in honey bees might also depend on peripheral processes of perception rather than higher-order brain centers of information integration.


1998 ◽  
Vol 01 (02n03) ◽  
pp. 267-282 ◽  
Author(s):  
Carl Anderson

Honey bee nectar foragers returning to the hive experience a delay as they search for a receiver bee to whom they transfer their material. In this paper I describe the simulation of the "threshold rule" (Seeley, 1995) which relates the magnitude of this search delay to the probability of performing a recriutment dance — waggle dance, tremble dance, or no dance. Results show that this rule leads to self-organised near-optimal worker allocation in a fluctuating environment, is extremely robust, and operates over a wide range of parameter values. The reason for the robustness appears to be the particular sytem of feedbacks that operate within the system.


2005 ◽  
Vol 59 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Jacobus C. Biesmeijer ◽  
Thomas D. Seeley
Keyword(s):  

2017 ◽  
Vol 29 (6) ◽  
pp. 1528-1560 ◽  
Author(s):  
Mehrdad Salmasi ◽  
Martin Stemmler ◽  
Stefan Glasauer ◽  
Alex Loebel

Synapses are the communication channels for information transfer between neurons; these are the points at which pulse-like signals are converted into the stochastic release of quantized amounts of chemical neurotransmitter. At many synapses, prior neuronal activity depletes synaptic resources, depressing subsequent responses of both spontaneous and spike-evoked releases. We analytically compute the information transmission rate of a synaptic release site, which we model as a binary asymmetric channel. Short-term depression is incorporated by assigning the channel a memory of depth one. A successful release, whether spike evoked or spontaneous, decreases the probability of a subsequent release; if no release occurs on the following time step, the release probabilities recover back to their default values. We prove that synaptic depression can increase the release site’s information rate if spontaneous release is more strongly depressed than spike-evoked release. When depression affects spontaneous and evoked release equally, the information rate must invariably decrease, even when the rate is normalized by the resources used for synaptic transmission. For identical depression levels, we analytically disprove the hypothesis, at least in this simplified model, that synaptic depression serves energy- and information-efficient encoding.


Ethology ◽  
2017 ◽  
Vol 123 (12) ◽  
pp. 974-980 ◽  
Author(s):  
Sylwia Łopuch ◽  
Adam Tofilski

Author(s):  
Walter M. Farina ◽  
Christoph Grüter ◽  
Andrés Arenas

Sign in / Sign up

Export Citation Format

Share Document