scholarly journals Follower Position Does Not Affect Waggle Dance Information Transfer

2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Parry M. Kietzman ◽  
P. Kirk Visscher

It is known that the honey bee waggle dance communicates the distance and direction of some item of interest, most commonly a food source, to nestmates. Previous work suggests that, in order to successfully acquire the information contained in a dance, other honey bees must follow the dancer from behind. We revisit this topic using updated methodology, including a greater distance from the hive to the feeder, which produced longer, more easily-read dances. Our results are not congruent with those of earlier work, and we did not conclude that honey bees must follow a dancer from behind in order to obtain the dance information. Rather, it is more likely that a follower can successfully acquire a dance’s information regardless of where she may be located about a dancer.

1998 ◽  
Vol 01 (02n03) ◽  
pp. 267-282 ◽  
Author(s):  
Carl Anderson

Honey bee nectar foragers returning to the hive experience a delay as they search for a receiver bee to whom they transfer their material. In this paper I describe the simulation of the "threshold rule" (Seeley, 1995) which relates the magnitude of this search delay to the probability of performing a recriutment dance — waggle dance, tremble dance, or no dance. Results show that this rule leads to self-organised near-optimal worker allocation in a fluctuating environment, is extremely robust, and operates over a wide range of parameter values. The reason for the robustness appears to be the particular sytem of feedbacks that operate within the system.


Ethology ◽  
2017 ◽  
Vol 123 (12) ◽  
pp. 974-980 ◽  
Author(s):  
Sylwia Łopuch ◽  
Adam Tofilski

2021 ◽  
Author(s):  
Zhengwei Wang ◽  
Xiuxian Chen ◽  
Frank Becker ◽  
Uwe Greggers ◽  
Stefan Walter ◽  
...  

Abstract Honeybees communicate locations by the waggle dance, a symbolic form of information transfer. Here we ask whether the recruited bee uses only the indicated course vector or translates it into a location vector on a cognitive map. Recruits were captured on exiting the hive and displaced to distant release sites. Their flights were tracked by radar. Both the vector portions of their flights and the ensuing tortuous search portions were strongly and differentially affected by release site. Search patterns were biased toward the true location of the food and away from the location given by adding release-site displacement to the danced vector. The results imply that the bees recruited by the dance access the indicated location of the food on a shared spatial representation. Thus, the bee dance communicates two messages, a flying instruction and a map location.


2020 ◽  
Vol 20 (5) ◽  
Author(s):  
Youjian Liang ◽  
Kuilin Meng ◽  
Jieliang Zhao ◽  
Jing Ren ◽  
Siqin Ge ◽  
...  

Abstract The abdominal intersegmental structures allow insects, such as honey bees, dragonflies, butterflies, and drosophilae, to complete diverse behavioral movements. In order to reveal how the complex abdominal movements of these insects are produced, we use the honey bee (Apis mellifera L.) as a typical insect to study the relationship between intersegmental structures and abdominal motions. Microstructure observational experiments are performed by using the stereoscope and the scanning electron microscope. We find that a parallel mechanism, composed of abdominal cuticle and muscles between the adjacent segments, produces the complex and diverse movements of the honey bee abdomen. These properties regulate multiple behavioral activities such as waggle dance and flight attitude adjustment. The experimental results demonstrate that it is the joint efforts of the muscles and membranes that connected the adjacent cuticles together. The honey bee abdomen can be waggled, expanded, contracted, and flexed with the actions of the muscles. From the view point of mechanics, a parallel mechanism is evolved from the intersegmental connection structures of the honey bee abdomen. Here, we conduct a kinematic analysis of the parallel mechanism to simulate the intersegmental abdominal motions.


1996 ◽  
Vol 199 (6) ◽  
pp. 1375-1381 ◽  
Author(s):  
J Tautz

The waggle dance of the honeybee Apis mellifera, used to recruit nestmates to a food source, takes place on the surface of the combs in the dark hive. The mechanism of information transfer between dancer and follower bees is not entirely understood. The results presented here reveal a novel factor that must be brought into any consideration of this mechanism, namely that the nature of the floor on which the bees dance has a considerable influence on the recruitment of nestmates to a food source. Dancers on combs with open empty cells recruit three times as many nestmates to a food source as dancers on capped brood cells.


2007 ◽  
Vol 47 (7) ◽  
pp. 883 ◽  
Author(s):  
Rob Manning ◽  
Kate Lancaster ◽  
April Rutkay ◽  
Linda Eaton

The parasite, Nosema apis, was found to be widespread among feral populations of honey bees (Apis mellifera) in the south-west of Western Australia. The location, month of collection and whether the feral colony was enclosed in an object or exposed to the environment, all affected the presence and severity of infection. There was no significant difference in the probability of infection between managed and feral bees. However, when infected by N. apis, managed bees appeared to have a greater severity of the infection.


2021 ◽  
Vol 11 (14) ◽  
pp. 6481
Author(s):  
Marianna Martinello ◽  
Chiara Manzinello ◽  
Nicoletta Dainese ◽  
Ilenia Giuliato ◽  
Albino Gallina ◽  
...  

Member states of the European Union are required to ensure the initiation of monitoring programs to verify honey bee exposure to pesticides, where and as appropriate. Based on 620 samples of dead honey bees—42 of pollen, 183 of honey and 32 of vegetables—we highlighted the presence, as analyzed by liquid and gas chromatography coupled with tandem mass spectrometric detection, of many active substances, mainly tau-fluvalinate, piperonyl butoxide, chlorpyrifos and chlorpyrifos-methyl, permethrin and imidacloprid. Among the active substances found in analyzed matrices linked to honey bee killing incidents, 38 belong to hazard classes I and II, as methiocarb, methomyl, chlorpyrifos, cypermethrin and permethrin, thus representing a potential risk for human health. We have shown that, at different times between 2015 and 2020, during implementation of the Italian national guidelines for managing reports of bee colony mortality or depopulation associated with pesticide use, pesticide pollution events occurred that could raise concern for human health. Competent authorities could, as part of a One Health approach, exploit the information provided by existing reporting programs on honey bees and their products, in view of the close correlation to human health, animal health and ecosystem health.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 216
Author(s):  
Matthieu Guichard ◽  
Benoît Droz ◽  
Evert W. Brascamp ◽  
Adrien von Virag ◽  
Markus Neuditschko ◽  
...  

For the development of novel selection traits in honey bees, applicability under field conditions is crucial. We thus evaluated two novel traits intended to provide resistance against the ectoparasitic mite Varroa destructor and to allow for their straightforward implementation in honey bee selection. These traits are new field estimates of already-described colony traits: brood recapping rate (‘Recapping’) and solidness (‘Solidness’). ‘Recapping’ refers to a specific worker characteristic wherein they reseal a capped and partly opened cell containing a pupa, whilst ‘Solidness’ assesses the percentage of capped brood in a predefined area. According to the literature and beekeepers’ experiences, a higher recapping rate and higher solidness could be related to resistance to V. destructor. During a four-year field trial in Switzerland, the two resistance traits were assessed in a total of 121 colonies of Apis mellifera mellifera. We estimated the repeatability and the heritability of the two traits and determined their phenotypic correlations with commonly applied selection traits, including other putative resistance traits. Both traits showed low repeatability between different measurements within each year. ‘Recapping’ had a low heritability (h2 = 0.04 to 0.05, depending on the selected model) and a negative phenotypic correlation to non-removal of pin-killed brood (r = −0.23). The heritability of ‘Solidness’ was moderate (h2 = 0.24 to 0.25) and did not significantly correlate with resistance traits. The two traits did not show an association with V. destructor infestation levels. Further research is needed to confirm the results, as only a small number of colonies was evaluated.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Shilpi Bhatia ◽  
Saman S. Baral ◽  
Carlos Vega Melendez ◽  
Esmaeil Amiri ◽  
Olav Rueppell

Among numerous viruses that infect honey bees (Apis mellifera), Israeli acute paralysis virus (IAPV) can be linked to severe honey bee health problems. Breeding for virus resistance may improve honey bee health. To evaluate the potential for this approach, we compared the survival of IAPV infection among stocks from the U.S. We complemented the survival analysis with a survey of existing viruses in these stocks and assessing constitutive and induced expression of immune genes. Worker offspring from selected queens in a common apiary were inoculated with IAPV by topical applications after emergence to assess subsequent survival. Differences among stocks were small compared to variation within stocks, indicating the potential for improving honey bee survival of virus infections in all stocks. A positive relation between worker survival and virus load among stocks further suggested that honey bees may be able to adapt to better cope with viruses, while our molecular studies indicate that toll-6 may be related to survival differences among virus-infected worker bees. Together, these findings highlight the importance of viruses in queen breeding operations and provide a promising starting point for the quest to improve honey bee health by selectively breeding stock to be better able to survive virus infections.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Minjie Huang ◽  
Jie Dong ◽  
Haikun Guo ◽  
Minghui Xiao ◽  
Deqian Wang

Abstract Background Dinotefuran (CAS No. 165252–70-0), a neonicotinoid insecticide, has been used to protect various crops against invertebrate pests and has been associated with numerous negative sublethal effects on honey bees. Long noncoding RNAs (lncRNAs) play important roles in mediating various biological and pathological processes, involving transcriptional and gene regulation. The effects of dinotefuran on lncRNA expression and lncRNA function in the honey bee brain are still obscure. Results Through RNA sequencing, a comprehensive analysis of lncRNAs and mRNAs was performed following exposure to 0.01 mg/L dinotefuran for 1, 5, and 10 d. In total, 312 lncRNAs and 1341 mRNAs, 347 lncRNAs and 1458 mRNAs, and 345 lncRNAs and 1155 mRNAs were found to be differentially expressed (DE) on days 1, 5 and 10, respectively. Gene set enrichment analysis (GSEA) indicated that the dinotefuran-treated group showed enrichment in carbohydrate and protein metabolism and immune-inflammatory responses such as glycine, serine and threonine metabolism, pentose and glucuronate interconversion, and Hippo and transforming growth factor-β (TGF-β) signaling pathways. Moreover, the DE lncRNA TCONS_00086519 was shown by fluorescence in situ hybridization (FISH) to be distributed mainly in the cytoplasm, suggesting that it may serve as a competing endogenous RNA and a regulatory factor in the immune response to dinotefuran. Conclusion This study characterized the expression profile of lncRNAs upon exposure to neonicotinoid insecticides in young adult honey bees and provided a framework for further study of the role of lncRNAs in honey bee growth and the immune response.


Sign in / Sign up

Export Citation Format

Share Document