scholarly journals Cooperative interaction between ERα and the EMT-inducer ZEB1 reprograms breast cancer cells for metastasis

Author(s):  
Nastaran Ghahhari ◽  
Magdalena Sznurkowska ◽  
Nicolas Hulo ◽  
Lilia Bernasconi ◽  
Nicola Aceto ◽  
...  

Abstract The epithelial to mesenchymal transition (EMT) has been proposed to contribute to the metastatic spread of breast cancer cells. EMT-promoting transcription factors determine a continuum of different EMT states. In contrast, estrogen receptor α (ERα) helps to maintain the epithelial phenotype of breast cancer cells and its expression is crucial for effective endocrine therapies. Determining whether and how EMT-associated transcription factors such as ZEB1 modulate ERα signaling during early stages of EMT could promote the discovery of novel therapeutic approaches to suppress metastasis. We have discovered that, shortly after induction of EMT and while cells are still epithelial, ZEB1 modulates ERα-mediated transcription induced by estrogen or cAMP signaling in breast cancer cells. Based on these findings and our ex vivo and xenograft results, we suggest that the functional interaction between ZEB1 and ERα may alter the tissue tropism of metastatic breast cancer cells towards bone.

2011 ◽  
Vol 102 (6) ◽  
pp. 1151-1157 ◽  
Author(s):  
Xiaoyan Li ◽  
Xiaoli Kong ◽  
Qiang Huo ◽  
Haiyang Guo ◽  
Shi Yan ◽  
...  

Neoplasma ◽  
2016 ◽  
Vol 63 (06) ◽  
pp. 901-910 ◽  
Author(s):  
B. SMOLKOVA ◽  
S. MIKLIKOVA ◽  
V. HORVATHOVA KAJABOVA ◽  
A. BABELOVA ◽  
N. EL YAMANI ◽  
...  

2020 ◽  
Author(s):  
Kenneth F. Fuh ◽  
Robert D. Shepherd ◽  
Jessica S. Withell ◽  
Brayden K. Kooistra ◽  
Kristina D Rinker

Abstract Background: Fluid forces are an integral part of the tumor microenvironment through all phases of development and progression. However, it is not well understood how these forces affect key steps in the progression of breast cancer of Epithelial-to-Mesenchymal Transition (EMT) and adhesion to vascular wall endothelial cells. EMT is associated with the progression of most carcinomas through induction of new transcriptional programs within affected epithelial cells, resulting in cells becoming more motile and adhesive to endothelial cells.Methods: MDA-MB-231, SK-BR-3, BT-474, and MCF-7 cells and normal Human Mammary Epithelial Cells (HMECs) were exposed to fluid flow in a parallel-plate bioreactor system. Changes in gene expression were quantified using microarrays and qPCR, gene-gene interactions were elucidated using network analysis, and key modified genes were examined in clinical datasets. Changes in protein expression of key EMT markers between chemically induced EMT and flow-exposed cells were compared in immunocytochemistry assays. Finally, the ability of flow-stimulated and unstimulated cancer cells to adhere to an endothelial monolayer was evaluated in flow and static adhesion experiments.Results: Fluid flow stimulation resulted in upregulation of EMT inducers and downregulation of repressors. Specifically, Vimentin and Snail were upregulated both at the gene and protein expression levels in flow stimulated HMECs, suggesting progression towards an EMT phenotype. Flow-induced overexpression of a panel of cell adhesion genes was also observed. Network analysis revealed genes involved in cell flow responses including FN1, PLAU, and ALCAM. When evaluated in clinical datasets, overexpression of FN1, PLAU, and ALCAM was observed in patients with most subtypes of breast cancer. We also observed increased adhesion of flow-stimulated breast cancer cells compared to unstimulated controls, suggesting an increased potential to form secondary tumors at metastatic sites. Conclusions: This study shows that prolonged fluid force exposure on the order of 1 Pa promotes EMT and adhesion of breast cancer cells to an endothelial monolayer. Further, identified biomarkers were distinctly expressed in patient populations. A better understanding of how biophysical forces such as shear stress affect cellular processes involved in metastatic progression of breast cancer is important for identifying new molecular markers for disease progression, and for predicting metastatic risk.


2019 ◽  
Vol 11 (12) ◽  
pp. 1042-1055 ◽  
Author(s):  
Weiwei Shi ◽  
Dongmei Wang ◽  
Xinwang Yuan ◽  
Yi Liu ◽  
Xiaojie Guo ◽  
...  

Abstract Glucocorticoid receptor (GR) is involved in the transcriptional regulation of genes that are important for various biological functions, including tumor growth and metastatic progression. However, the cellular and biological effects of GR remain poorly understood. Here, we investigated the role of GR and its underlying mechanism in mediating breast cancer cell survival and metastasis. We observed that the GR levels were increased in drug-resistant breast cancer cells and in metastatic breast cancer samples. GR promoted tumor cell invasion and lung metastasis in vivo. The GR expression levels were negatively correlated with the survival rates of breast cancer patients. Both ectopic expression and knockdown of GR revealed that GR is a strong inducer of epithelial-to-mesenchymal transition (EMT), which is consistent with its effects on cell survival and metastasis. GR suppressed the expression of insulin receptor substrate 1 (IRS-1) by acting as an IRS-1 transcriptional repressor. In addition, GR has an opposite effect on the expression levels of IRS-2, indicating that GR is able to differentially regulate the IRS-1 and IRS-2 expression. The cellular and biological effects elicited by GR were consistent with the reduced levels of IRS-1 observed in cancer cells, and GR-mediated IRS-1 suppression activated the ERK2 MAP kinase pathway, which is required for GR-mediated EMT. Taken together, our results indicate that GR–IRS-1 signaling axis plays an essential role in regulating the survival, invasion, and metastasis of breast cancer cells.


2019 ◽  
Vol 9 ◽  
Author(s):  
María Candelaria Llorens ◽  
Fabiana Alejandra Rossi ◽  
Iris Alejandra García ◽  
Mariana Cooke ◽  
Martin C. Abba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document