scholarly journals Stress analysis of double-walled pipes undergone mechanical drawing process

Author(s):  
Ruogu Zhang ◽  
Yu Wang ◽  
Yinbo Zhu ◽  
JiDong Jin ◽  
HengAn Wu ◽  
...  

Abstract Double-walled metal pipes are important components for heat exchange and liquid transportation. They can be manufactured by mechanical drawing of two concentric pipes. In this work, a mechanical model is developed to analyze the stress state evolution during the manufacturing process, and the criterion for forming the double-walled pipe was given under the ideal elastoplastic and thick-wall assumptions. The model also encompasses the results deduced under the thin-wall assumption. Numerical simulations confirmed that the accuracy of the analytical model was within 5%. The application on actual steel materials with various parameters varied, including the wall thickness and initial gap, was analyzed. This work can provide theoretical support to industrial manufacturing procedures and help to reduce costs by eliminating required test procedures.

Author(s):  
RuoGu Zhang ◽  
Yu Wang ◽  
Yinbo Zhu ◽  
JiDong Jin ◽  
HengAn Wu ◽  
...  

AbstractDouble-walled metal pipes are important components for heat exchange and liquid transportation. They can be manufactured by mechanical drawing of two concentric pipes. In this work, a mechanical model is developed to analyze the stress state evolution during the manufacturing process, and the criterion for forming the double-walled pipe was given under the ideal elastoplastic and thick-walled assumptions. The model also encompasses the results deduced under the thin-walled assumption. Numerical simulations confirmed that the accuracy of the analytical model was within 5%. The application on actual steel materials with various parameters varied, including the wall thickness and initial gap, was analyzed. This work can provide theoretical support to industrial manufacturing procedures and help to reduce costs by eliminating required test procedures.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950090
Author(s):  
HAIXIA YU ◽  
XIN PAN ◽  
WEIMING YANG ◽  
WENFU ZHANG ◽  
XIAOWEI ZHUANG

Bamboo material is widely used in outdoor applications. However, they are easily degraded when exposed to sunlight, their smooth surface will gradually turn to rough, and small cracks will appear and finally develop to large cracks. The paper presents a first-time investigation on the microstructure changes in the tangential section of Moso bamboo (Phyllostachys pubescens Mazel) radiated by artificial UV light. The results showed that the cracks mainly appeared at intercellular spaces of fibers where lignin content was high, the parenchyma cell walls and neighbor pits where the cell wall was very thin and more vulnerable than the other parts. In addition, the part of raised area and pit cavity tended to absorb more UV light radiation and showed more and larger cracks than the otherwhere. Cracks at the intercellular spaces of fibers were larger and bigger than those on the parenchyma cell walls. The cracks on the pits of the parenchyma cell walls normally appeared at one pit and then extended to the several surrounding pits. Bordered pits cavity showed more and larger cracks than the pits on the thin wall cells. The simple pits on the thick wall cells and the fiber cells were unaffected by UV radiation.


2016 ◽  
Vol 256 ◽  
pp. 334-339 ◽  
Author(s):  
Song Chen ◽  
Fan Zhang ◽  
You Feng He ◽  
Da Quan Li ◽  
Qiang Zhu

Semi-solid slurry has significantly higher viscosity than liquid metal. This character of fluidity makes product design and die design, such as gating system, overflow and venting system, be different between these two die casting processes. In the present paper, taking a clamp product as an example, analyses the product optimization and die design by comparing the experimental and computational numerical simulation results. For the clamp, product structure is designed to be suitable for characters of SSM die casting process. The gating system is designed to be uniform variation of thickness, making the cross-sectional area uniformly reduce from the biscuit to the gate. This design ensures semi-solid metal slurry to fill die cavity from thick wall to thin wall. Gate position is designed at the thickest location, the gate shape of semi-solid die casting is set to be much bigger than traditional liquid casting. A good filling behaviour can be achieved by aforementioned all these design principles and it will be helpful to the intensification of pressure feeding after filling.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Taku Inohara ◽  
Takashi Kawakami ◽  
Masaharu Kataoka ◽  
Keiichi Fukuda

Introduction: Conventionally, angiographic classification has been used for chronic thromboembolic pulmonary hypertension (CTEPH). However, a classification based on lesion morphology is needed in the era of balloon pulmonary angioplasty (BPA). We sought to propose a classification of CTEPH based on lesion morphology detected by optical coherence tomography (OCT) and to evaluate its association with physiological stenosis assessed with a pressure wire and therapeutic efficacy in BPA. Methods: We analyzed 43 lesions in 17 patients who were treated with BPA under OCT and pressure-wire guidance from November 2012 to March 2015. OCT findings were classified into the following 4 categories: 1) mono-hole, 2) septum, 3) multi-hole with thin wall, and 4) multi-hole with thick wall. Results: Angiographic findings did not match the specific morphologic classification based on OCT findings. At the pre-BPA assessment, the pressure ratio of the septum type was significantly higher than that of the mono-hole and multi-hole with thick wall types (p = 0.026 and 0.047, respectively). Under the OCT-based classification, more than 50% of the septum and multi-hole with thin wall types could accomplish >0.8 of the mean pressure ratio assessed by a pressure wire, and these proportions were significantly higher than those of the other 2 types: mono-hole and multi-hole with thick wall (p = 0.044). Based on angiographic classification, accomplishment of this criterion was not significantly different among angiographic types. Conclusions: OCT-based morphologic lesion classifications in CTEPH were useful to predict whether the lesion stenosis could improve to the acceptable level mediated by BPA.


Author(s):  
Parisa Hosseini Tehrani ◽  
Sajad Pirmohammad

There is a growing interest in the use of thin-wall structures as a means of absorbing the kinetic energy of a moving body. Multi-layered thin-wall structures are more efficient and lighter than thick-wall structures, and show better crashworthiness characteristics. In this task, several concentric aluminum thin wall tubes as energy absorber under axial and oblique loading are studied and optimum combination of these tubes is presented. The weight of the tubes is optimized while crashworthiness of tubes is not compromised. The commercial finite element program LS-DYNA that offers non-linear dynamic simulation capabilities was used in this study.


2000 ◽  
Vol 14 (19n20) ◽  
pp. 2109-2116
Author(s):  
N. PANCHAPAKESAN

The nature of the transition from the quantum tunneling regime to the thermal hopping regime has importance in the study of condensed matter physics and cosmological phase transitions. It may also be of significance in collapse from quantum state to a classical state due to measurement (or loss of coherence due to some other process). We study this transition analytically in scalar field theory with a fourth order term. We obtain analytic bounce solutions which correctly give the action in thin and thick wall limits of the potential. We find that the transition is of the second order for the case of thick wall while it seems to be of first order for the case of thin wall.


1996 ◽  
Vol 4 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Walter Peters ◽  
Dennis Smith ◽  
Stanley Lugowski

There have been three generations of silicone-gel breast implants. First generation implants (thick wall – thick gel with Dacron patches) were made from 1963 to 1972. Second generation implants (thin wall-thin gel) were made from 1972 until the mid 1980s. The introduction of third generation implants (stronger wall, low-bleed) was geographically dependent. In Canada, Dow Corning Silastic II implants were introduced in 1986, and Surgitek SCL implants were introduced in 1988. In the present study, a total of 352 silicone-gel breast implants were removed from 239 patients between 1981 and 1995. Their failure properties were dependent upon their generation (year of manufacture) and, for second generation implants, their duration in situ. Of the 352 implants, 20 were first generation, and all were fully intact. Twenty-eight were third generation implants, and 27 were fully intact. Failure properties of the 302 second generation implants were dependent upon their duration of implantation. A survival curve indicated that these implants began to fail (by leaking or rupturing) after four years in situ. By six years, 40% had failed. After 12 years, 95% had failed. Of the 171 second generation implants removed between 1991 and 1995, 77% had failed. The failure properties were similar for the three main manufacturers: Dow Corning, Heyer-Schulte and Surgitek. The failure rate for second generation implants is much higher than was previously believed. This is particularly significant in view of the current difficulty in diagnosing implant failure.


2014 ◽  
Vol 694 ◽  
pp. 279-282
Author(s):  
Qi Liu ◽  
Hang Guo ◽  
Wei Wang ◽  
Yu Ting Wu ◽  
Fang Ye ◽  
...  

In the process of shell design of a 100kW single screw expander, the fundamental research on the screw chamber walls thickness is still lacking. Thin wall may cause deformation and the damage possibility of the inlet passage. Thick wall will increase the weight of the expander and led to assembly problem and transportation inconvenience. In this paper, static finite element analysis on cast shell of the 100 kW single screw expander was carried out. By calculating stress distribution and deformation of the expander shell under 1.5 times of the design pressure, the authors find the thickness of gate rotor chamber walls and inlet passage walls as 15 mm is acceptable, but the thickness of screw chamber walls should be at least 35 mm.


Author(s):  
Barry Millet ◽  
Kaveh Ebrahimi

Abstract This paper will clarify the point of transition where the behavior of the dish of a torispherical head goes from thin wall theory (collapse failure and membrane) to thick wall (burst failure) as the head dish radius to thickness ratios (L/t) gets smaller. There are several stated ratio limits for this transition. Three separate Welding Research Bulletins WRC 364 New Design Curves for Torispherical Heads[1], WRC 444 Buckling Criteria for Torispherical Heads Under Internal Pressure [3] and, WRC 501 Design of Torispherical and Ellipsoidal Heads Subjected to Internal Pressure[4] each provide a different definition of the transition point, that being 16.67, 15 and 20 respectively. This paper will review the actual test performed for L/t ratios from 20 down to 15 (which is the lowest ratio test run) and provide the results of a numerical desktop study in lieu of actual testing. Linear elastic, elastic perfectly plastic limit load and elastic plastic limit load finite element analysis will be parametrically run across many L/t ratios and the knuckle radius will be varied across the runs. The results will be reviewed to check through wall behavior to find the transition point of thin to thick wall behavior. These will also be compared against the existing ASME BVP Section VIII Division 2 [5] formulas.


Sign in / Sign up

Export Citation Format

Share Document