scholarly journals Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer

2020 ◽  
Author(s):  
Simona Camorani ◽  
Margherita Passariello ◽  
Lisa Agnello ◽  
Silvia Esposito ◽  
Francesca Collina ◽  
...  

Abstract Background: Triple-negative breast cancer (TNBC) is a uniquely aggressive cancer with high rates of relapse due to resistance to chemotherapy. TNBC expresses higher levels of programmed cell death-ligand 1 (PD-L1) compared to other breast cancers, providing the rationale for the recently approved immunotherapy with anti-PD-L1 monoclonal antibodies (mAbs). A huge effort is dedicated to identify actionable biomarkers allowing for combination therapies with immune-checkpoint blockade. Platelet-derived growth factor receptor β (PDGFRβ) is highly expressed in invasive TNBC, both on tumor cells and tumor microenvironment. We recently proved that tumor growth and lung metastases are impaired in mouse models of human TNBC by a high efficacious PDGFRβ aptamer. Hence, we aimed at investigating the effectiveness of a novel combination treatment with the PDGFRβ aptamer and anti-PD-L1 mAbs in TNBC.Methods: The targeting ability of the anti-human PDGFRβ aptamer toward the murine receptor was verified by streptavidin-biotin assays and confocal microscopy, and its inhibitory function by transwell migration assays. The anti-proliferative effects of the PDGFRβ aptamer/anti-PD-L1 mAbs combination was assessed in human MDA-MB-231 and murine 4T1 TNBC cells, both grown as monolayer or co-cultured with lymphocytes. Tumor cell lysis and cytokines secretion by lymphocytes were analyzed by LDH quantification and ELISA, respectively. Orthotopic 4T1 xenografts in syngeneic mice were used for dissecting the effect of aptamer/mAb combination on tumor growth, metastasis and lymphocytes infiltration. Ex vivo analyses through immunohistochemistry, RT-qPCR and immunoblotting were performed. Results: We show that the PDGFRβ aptamer potentiates the anti-proliferative activity of anti-PD-L1 mAbs on both human and murine TNBC cells, according to its human/mouse cross-reactivity. Further, by binding to activated human and mouse lymphocytes, the aptamer enhances the anti-PD-L1 mAb-induced cytotoxicity of lymphocytes against tumor cells. Importantly, the aptamer heightens the antibody efficacy in inhibiting tumor growth and lung metastases in mice. It acts on both tumor cells, inhibiting Akt and ERK1/2 signaling pathways, and immune populations, increasing intratumoral CD8+T cells and reducing FOXP3+Treg cells. Conclusion: Co-treatment of PDGFRβ aptamer with anti-PD-L1 mAbs is a viable strategy, thus providing for the first an evidence of the efficacy of PDGFRβ/PD-L1 co-targeting combination therapy in TNBC.

2020 ◽  
Author(s):  
Simona Camorani ◽  
Margherita Passariello ◽  
Lisa Agnello ◽  
Silvia Esposito ◽  
Francesca Collina ◽  
...  

Abstract Background: Triple-negative breast cancer (TNBC) is a uniquely aggressive cancer with high rates of relapse due to resistance to chemotherapy, the current major option for treatment. TNBC expresses higher levels of programmed cell death-ligand 1 (PD-L1) compared to other breast cancers, providing the rationale for the recently approved immunotherapy with anti-PD-L1 monoclonal antibodies (mAbs). A huge effort is dedicated to identify actionable biomarkers that may allow for novel combination therapies with immune-checkpoint blockade in TNBC. Platelet-derived growth factor receptor β (PDGFRβ) is highly expressed in mesenchymal invasive TNBC, both on tumor cells and tumor microenvironment (TME). We recently proved that tumor growth and lung metastases are impaired in mouse models of human TNBC by a high efficacious PDGFRβ aptamer. Hence, we aimed at investigating the effectiveness of a novel combination treatment with the PDGFRβ aptamer and anti-PD-L1 mAbs in TNBC.Methods: The targeting ability of the anti-human PDGFRβ aptamer toward the murine receptor was verified by streptavidin-biotin assays and confocal microscopy, and its inhibitory function by transwell migration assays on PDGFRβ-positive cells. The anti-proliferative effects of the PDGFRβ aptamer/anti-PD-L1 mAbs combination was assessed in human MDA-MB-231 and murine 4T1 TNBC cells, both grown as monolayer or co-cultured with lymphocytes. Tumor cell lysis and cytokines secretion by lymphocytes were analyzed by LDH quantification and ELISA, respectively. Orthotopic 4T1 xenografts in syngeneic mice were used for dissecting the effect of aptamer/mAbs combination on tumor growth, metastasis and lymphocytes infiltration. Ex vivo analyses through immunohistochemistry, RT-qPCR and immunoblotting were performed. Results: We show that the PDGFRβ aptamer potentiates the anti-proliferative activity of anti-PD-L1 mAbs on both human and murine TNBC cells, according to its human/mouse cross-reactivity. Further, by binding to activated human and mouse lymphocytes, the aptamer enhances the anti-PD-L1 mAbs-induced cytotoxicity of lymphocytes against tumor cells. Importantly, the aptamer heightens the antibody efficacy in inhibiting tumor growth and lung metastases in a syngeneic mouse model by acting on both TME and cancer cells. Conclusion: Co-treatment of PDGFRβ aptamer with anti-PD-L1 mAbs is a viable strategy, thus providing for the first an evidence of the efficacy of PDGFRβ/PD-L1 co-targeting combination therapy in TNBC.


Author(s):  
Simona Camorani ◽  
Margherita Passariello ◽  
Lisa Agnello ◽  
Silvia Esposito ◽  
Francesca Collina ◽  
...  

2018 ◽  
Vol 17 (4) ◽  
pp. 1297-1303 ◽  
Author(s):  
Ralf Kleef ◽  
Ralph Moss ◽  
A. Marcell Szasz ◽  
Arthur Bohdjalian ◽  
Hans Bojar ◽  
...  

The prognosis of triple-negative breast cancer with metastases after chemotherapy remains dismal. We report the case of a 50-year-old female with first disease recurrence at the axillary lymph node and, later on, bilateral pulmonary metastases with severe shortness of breath. The patient received low-dose immune checkpoint blockade (concurrent nivolumab and ipilimumab) weekly over 3 weeks with regional hyperthermia 3 times a week, followed by systemic fever-range hyperthermia induced by interleukin-2 for 5 days. She went into complete remission of her pulmonary metastases with transient WHO I-II diarrhea and skin rash. The patient remained alive for 27 months after the start of treatment, with recurrence of metastases as a sternal mass, and up to 3 cm pleural metastases. This exceptional response should instigate further research efforts with this protocol, which consists only of approved drugs and treatments.


2020 ◽  
Vol 15 (4) ◽  
pp. 415-428 ◽  
Author(s):  
Laura L. Michel ◽  
Alexandra von Au ◽  
Athanasios Mavratzas ◽  
Katharina Smetanay ◽  
Florian Schütz ◽  
...  

2021 ◽  
Vol 10 ◽  
Author(s):  
Remy Thomas ◽  
Ghaneya Al-Khadairi ◽  
Julie Decock

Immunotherapy has emerged as the fifth pillar of cancer treatment alongside surgery, radiotherapy, chemotherapy, and targeted therapy. Immune checkpoint inhibitors are the current superheroes of immunotherapy, unleashing a patient’s own immune cells to kill tumors and revolutionizing cancer treatment in a variety of cancers. Although breast cancer was historically believed to be immunologically silent, treatment with immune checkpoint inhibitors has been shown to induce modest responses in metastatic breast cancer. Given the inherent heterogeneity of breast tumors, this raised the question whether certain breast tumors might benefit more from immune-based interventions and which cancer cell-intrinsic and/or microenvironmental factors define the likelihood of inducing a potent and durable anti-tumor immune response. In this review, we will focus on triple negative breast cancer as immunogenic breast cancer subtype, and specifically discuss the relevance of tumor mutational burden, the plethora and diversity of tumor infiltrating immune cells in addition to the immunoscore, the presence of immune checkpoint expression, and the microbiome in defining immune checkpoint blockade response. We will highlight the current immune checkpoint inhibitor treatment options, either as monotherapy or in combination with standard-of-care treatment modalities such as chemotherapy and targeted therapy. In addition, we will look into the potential of immunotherapy-based combination strategies using immune checkpoint inhibitors to enhance both innate and adaptive immune responses, or to establish a more immune favorable environment for cancer vaccines. Finally, the review will address the need for unambiguous predictive biomarkers as one of the main challenges of immune checkpoint blockade. To conclude, the potential of immune checkpoint blockade for triple negative breast cancer treatment could be enhanced by exploration of aforementioned factors and treatment strategies thereby providing promising future prospects.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alyssa Vito ◽  
Omar Salem ◽  
Nader El-Sayes ◽  
Ian P. MacFawn ◽  
Ana L. Portillo ◽  
...  

AbstractTriple negative breast cancer holds a dismal clinical outcome and as such, patients routinely undergo aggressive, highly toxic treatment regimens. Clinical trials for TNBC employing immune checkpoint blockade in combination with chemotherapy show modest prognostic benefit, but the percentage of patients that respond to treatment is low, and patients often succumb to relapsed disease. Here, we show that a combination immunotherapy platform utilizing low dose chemotherapy (FEC) combined with oncolytic virotherapy (oHSV-1) increases tumor-infiltrating lymphocytes, in otherwise immune-bare tumors, allowing 60% of mice to achieve durable tumor regression when treated with immune checkpoint blockade. Whole-tumor RNA sequencing of mice treated with FEC + oHSV-1 shows an upregulation of B cell receptor signaling pathways and depletion of B cells prior to the start of treatment in mice results in complete loss of therapeutic efficacy and expansion of myeloid-derived suppressor cells. Additionally, RNA sequencing data shows that FEC + oHSV-1 suppresses genes associated with myeloid-derived suppressor cells, a key population of cells that drive immune escape and mediate therapeutic resistance. These findings highlight the importance of tumor-infiltrating B cells as drivers of antitumor immunity and their potential role in the regulation of myeloid-derived suppressor cells.


Sign in / Sign up

Export Citation Format

Share Document