scholarly journals Biodiesel production from vegetable oil refinery waste using ohmic-assisted esterification

Author(s):  
Afsaneh Alishahi ◽  
MEHRDAD NIAKOUSARI ◽  
Mohammad Taghi Golmakani

Abstract The ohmic-assisted esterification method was compared and contrasted with the conventional esterification method for biodiesel (fatty acid methyl esters) production from vegetable oil refinery waste containing high free fatty acids. The reaction variables were free fatty acid:methanol molar ratio (1:1, 1:5, 1:10, and 1:15), catalyst concentration (1%, 2%, and 3%) and reaction time (5, 30, and 60 min). By increasing the conversion yield of free fatty acids to fatty acid methyl esters, density increased while viscosity and refractive index decreased. Optimum reaction conditions were a molar ratio of 1:10 and a catalyst concentration of 3% after 60 min of esterification reaction, while having a 95.74% conversion yield. There was no significant difference between fatty acid methyl esters produced with ohmic-assisted esterification and conventional esterification methods in terms of fatty acid profile, physicochemical and heating properties. Meanwhile, energy consumption by the conventional esterification method was about 25% higher than that of ohmic-assisted esterification. In fact, ohmic-assisted esterification can be considered as a green, cost-effective alternative method for the production of biodiesel from vegetable oil refinery waste.

2019 ◽  
Vol 21 (3) ◽  
pp. 560-566 ◽  
Author(s):  
Meizhen Lu ◽  
Libo Peng ◽  
Qinglong Xie ◽  
Ni Yang ◽  
Hailun Jin ◽  
...  

A green synthesis of bio-aldehydes from vegetable oil derivatives is provided by a WO3/H2O2-based “release and capture” catalytic system.


2019 ◽  
Vol 62 (2) ◽  
pp. 467-474 ◽  
Author(s):  
Stanley Anderson ◽  
Terry Walker ◽  
Bryan Moser ◽  
Caye Drapcho ◽  
Yi Zheng ◽  
...  

Abstract. Eversa Transform was used as an enzymatic catalyst to transform glandless and crude (heavy pigment) cottonseed oils into biodiesel. The oils were reacted with methanol at a 6:1 molar ratio with modified amounts of water, lipase, and temperature. Reactions were conducted in the presence of lipase and water at doses of 2, 5, and 8 wt% and 1, 3, and 6 wt%, respectively. Product composition and conversion were determined using the gas chromatography method of ASTM D6584. Oxidative stability was determined following EN 15751. The conversion to fatty acid methyl esters averaged 98.5% across all samples. Temperature had the most significant effect on conversion (p < 0.0035). Lipase and water dosages did not affect conversion, while each had an effect with temperature that was significant across the difference between 3 and 1 wt% water content and between 8 and 5 wt% enzyme content between the two temperatures (p = 0.0018 and 0.0153), respectively. Induction periods (oxidative stability) of the glandless and crude cottonseed oils were significantly different, but there was no difference between the two oil conversions based on oil type. Keywords: Biodiesel, Cottonseed oil, Fatty acid methyl esters, Lipase, Oxidative stability, Transesterification.


2008 ◽  
Vol 19 (8) ◽  
pp. 1475-1483 ◽  
Author(s):  
Maria Cristina Milinsk ◽  
Makoto Matsushita ◽  
Jesuí V. Visentainer ◽  
Cláudio C. de Oliveira ◽  
Nilson E. de Souza

KOVALEN ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 206-211
Author(s):  
Sumarni ◽  
Erwin Abdul Rahim ◽  
Ni Ketut Sumarni ◽  
Ruslan ◽  
Hardi Ys. ◽  
...  

Research on the manufacture of methyl esters from avocado seeds (Parsea americana Mill) with eugenol-based catalysts has been conducted. The aim is to determine the catalyst concentration used to produce methyl esters with the highest rendement and determine the composition of fatty acid methyl ester in avocado seeds. This study was used variations in concentrations of 0.25%, 1%, 1.75%, 2.25%, and 3%. The results of this study showed that the best concentration is 2.25% with the calculation of the results of 24.8% methyl esters in avocado seeds, namely lignoceric and octadecenoic acid methyl ester. Keywords: Avocado seeds, fatty acid methyl esters


2012 ◽  
Vol 197 ◽  
pp. 459-467 ◽  
Author(s):  
I. Reyes ◽  
G. Ciudad ◽  
M. Misra ◽  
A. Mohanty ◽  
D. Jeison ◽  
...  

2012 ◽  
Vol 581-582 ◽  
pp. 197-201 ◽  
Author(s):  
Ling Mei Yang ◽  
Peng Mei Lv ◽  
Zhen Hong Yuan ◽  
Wen Luo ◽  
Hui Wen Li ◽  
...  

Transesterification of soybean oil with methanol to methyl eaters was found proceed in the presence of KOH loaded on five different oxides (CaO, MgO, Al2O3, Bentonite, kaolin) as heterogeneous catalysts. The structure and performance of these catalysts were studied using the techniques of XRD, CO2-TPD, and SEM. It was found that the 15wt% KOH/CaO catalyst provided best activity. In the presence of this catalyst, the yield of fatty acid methyl esters was 97.1%. The reaction conditions were as follows: methanol to soybean oil molar ratio was 16:1, temperature of 65 °C, reaction time of 1 h, and a catalyst amount of 4 wt%. The catalysts of KOH loaded on CaO showed a new crystalline phase of K2O. However, the catalyst of 15-KOH/CaO has more basic sites than the catalyst of 15-KOH/MgO. Therefore, the catalyst of 15-KOH/CaO has been associated with higher transesterification activity.


2019 ◽  
Vol 15 (1) ◽  
pp. 79
Author(s):  
Noor Ridha Yanti ◽  
Meilana Dharma Putra ◽  
Agung Nugroho ◽  
Hesty Heryani

In recent years, the development of renewable energy such as biodiesel has been widely researched throughout the world as technology advances in the era of Industry 4.0. At the final station of biodiesel production in the maturation tank, the by-products will form by-products in the form of sterol glycosides in Fatty Acid Methyl Esters which have not been utilized. This study aims to determine the volume of biodiesel from a mixture of sterol glycosides with a ratio of 0.5% H2SO4 catalyst concentration; 1%; 1.5% and 2% and tested their characteristics in accordance with the Indonesian National Standard (SNI 7182: 2015). Biodiesel production was carried out by esterification with a molar ratio of 1:6 (sterol glycoside: methanol) to variations in H2SO4 catalyst concentration. The results of the highest yield volume biodiesel were obtained from a catalyst concentration of 1.5% of 28.02% and the lowest yield of 17.50% in a 0.5% catalyst. Based on the characteristic test of biodiesel by varying the concentration of catalyst H2SO4 obtained density of 852 – 862 kg m-3, viscosity of 4.642 – 4.950 mm2 s-1 and saponification number of 191.007 – 198.164 mg-KOH g-1 according to standard characteristics SNI 7182:2015, while for the water content of 0.1965 – 0.1976% and acid numbers of 2.151 – 3.232 mg-KOH g-1 isn’t according to standard characteristics. Based on research, pre-treatment treatments was recommended before the refining process to reduce the amount of acid and moisture content so according to standard characteristics.


2003 ◽  
Vol 42 (13) ◽  
pp. 2924-2933 ◽  
Author(s):  
Krzysztof Alejski ◽  
Elzbieta Bialowas ◽  
Wieslaw Hreczuch ◽  
Bernd Trathnigg ◽  
Jan Szymanowski

Sign in / Sign up

Export Citation Format

Share Document