scholarly journals Umbilical Cord Mesenchymal Stem Cells-derived Exosomes Deliver Mir-21 to Accelerate Corneal Epithelial Wound Healing Through PTEN/PI3K/Akt pathway

Author(s):  
Xuran Li ◽  
Xiaolong Liu ◽  
Yanyan Zhang ◽  
Zhiyu Liu ◽  
Xinyue Li ◽  
...  

Abstract BackgroundRapid restoration of corneal epithelium integrity after injury is particularly important for preserving corneal transparency and vision. Mesenchymal stem cells (MSCs) can be taken into account as the promising regenerative therapeutics for improvement of wound healing processes based on the variety of the effective components. The extracellular vesicles form MSCs, especially exosomes, has been considered as important paracrine mediators though transferring microRNAs into recipient cell. This study investigated the mechanism of human umbilical cord MSC-derived exosomes (HUMSC-exosomes) on corneal epithelial wound healing.MethodsExosomes extracted from HUMSCs were identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot. Corneal fluorescein staining and histological staining were evaluated in a corneal mechanical wound model. Changes in HCECs proliferation after HUMSC-exosomes or miR-21 mimic treatment were evaluated by CCK-8 and EdU assays, while migration was assessed by in vitro scratch wound assay. Full-length transcriptome sequencing was performed to identify the differentially expressed genes associated with HUMSC-exosomes treatment, followed by validation via real-time PCR and Western blot.ResultsThe exosomes derived from HUMSCs can significantly promote corneal epithelial cells proliferation, migration in vitro and accelerate corneal epithelial wound healing in vivo. Similar effects were obtained after miR-21 transfection, while the beneficial effects of HUMSC-exosomes were partially negated by miR-21 knockdown. Results also show that the benefits are associated with decreased PTEN level and activated the PI3K/Akt signaling pathway in HCECs.ConclusionsHUMSC-exosomes could accelerate the recovery of corneal epithelial wounds though restraining PTEN by transferring miR-21, and may represent a promising novel therapeutic agent for corneal wound repair.

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1254
Author(s):  
Santhosh Kacham ◽  
Tejal Sunil Bhure ◽  
Sindhuja D. Eswaramoorthy ◽  
Gaurav Naik ◽  
Subha Narayan Rath ◽  
...  

Corneal injuries are among the leading causes of blindness and vision impairment. Trauma, infectious keratitis, thermal and chemical (acids and alkali burn) injuries may lead to irreversible corneal scarring, neovascularization, conjunctivalization, and limbal stem cell deficiency. Bilateral blindness constitutes 12% of total global blindness and corneal transplantation remains a stand-alone treatment modality for the majority of end-stage corneal diseases. However, global shortage of donor corneas, the potential risk of graft rejection, and severe side effects arising from long-term use of immunosuppressive medications, demands alternative therapeutic approaches. Umbilical cord-derived mesenchymal stem cells can be isolated in large numbers using a relatively less invasive procedure. However, their role in injury induced corneal repair is largely unexplored. Here, we isolated, cultured and characterized mesenchymal stem cells from human umbilical cord, and studied the expression of mesenchymal (CD73, CD90, CD105, and CD34), ocular surface and epithelial (PAX6, WNT7A, and CK-8/18) lineage markers through immunofluorescence. The cultured human limbal and corneal epithelial cells were used as controls. Scratch assay was used to study the corneal epithelial repair potential of umbilical cord-derived mesenchymal stem cells, in vitro. The in vitro cultured umbilical cord-derived mesenchymal stem cells were plastic adherent, showed trilineage differentiation and expressed: mesenchymal markers CD90, CD105, CD73; epithelial marker CK-8/18, and ocular lineage developmental markers PAX6 and WNT-7A. Our findings suggest that umbilical cord-derived mesenchymal stem cells promote repair of the injured corneal epithelium by stimulating the proliferation of corneal epithelial cells, in vitro. They may serve as a potential non-ocular source of stem cells for treating injury induced bilateral corneal diseases.


Author(s):  
Sushmitha Sriramulu ◽  
Antara Banerjee ◽  
Ganesan Jothimani ◽  
Surajit Pathak

AbstractObjectivesWound healing is a complex process with a sequence of restoring and inhibition events such as cell proliferation, differentiation, migration as well as adhesion. Mesenchymal stem cells (MSC) derived conditioned medium (CM) has potent therapeutic functions and promotes cell proliferation, anti-oxidant, immunosuppressive, and anti-apoptotic effects. The main aim of this research is to study the role of human umbilical cord-mesenchymal stem cells (UC-MSCs) derived CM in stimulating the proliferation of human keratinocytes (HaCaT).MethodsFirstly, MSC were isolated from human umbilical cords (UC) and the cells were then cultured in proliferative medium. We prepared and collected the CM after 72 h. Morphological changes were observed after the treatment of HaCaT cells with CM. To validate the findings, proliferation rate, clonal efficiency and also gene expression studies were performed.ResultsIncreased proliferation rate was observed and confirmed with the expression of Proliferating Cell Nuclear Antigen (PCNA) after treatment with HaCaT cells. Cell-cell strap formation was also observed when HaCaT cells were treated with CM for a period of 5–6 days which was confirmed by the increased expression of Collagen Type 1 Alpha 1 chain (Col1A1).ConclusionsOur results from present study depicts that the secretory components in the CM might play a significant role by interacting with keratinocytes to promote proliferation and migration. Thus, the CM stimulates cellular proliferation, epithelialization and migration of skin cells which might be the future promising application in wound healing.


2012 ◽  
Vol 21 (18) ◽  
pp. 3289-3297 ◽  
Author(s):  
Hong-Chao Zhang ◽  
Xin-Bin Liu ◽  
Shu Huang ◽  
Xiao-Yun Bi ◽  
Heng-Xiang Wang ◽  
...  

2017 ◽  
Vol 42 (8) ◽  
pp. 2344-2353 ◽  
Author(s):  
Xiuhua Yao ◽  
Huiling Huang ◽  
Zhou Li ◽  
Xiaohua Liu ◽  
Weijia Fan ◽  
...  

2018 ◽  
Vol 373 (2) ◽  
pp. 379-393 ◽  
Author(s):  
Tao Zhang ◽  
Pan Wang ◽  
Yanxia Liu ◽  
Jiankang Zhou ◽  
Zhenqing Shi ◽  
...  

Medicine ◽  
2020 ◽  
Vol 99 (25) ◽  
pp. e20628
Author(s):  
Wenmin Yu ◽  
Wenlong Hu ◽  
Xiumei Ke ◽  
Xufeng Zhou ◽  
Changchang Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document