scholarly journals Fra-2 Overexpression Upregulates Pro-metastatic Cell-adhesion Molecules, Promotes Pulmonary Metastasis and Reduces Survival in a Spontaneous Xenograft Model of Human Breast Cancer

Author(s):  
Sabrina Arnold ◽  
Jan Kortland ◽  
Diana V. Maltseva ◽  
Timur R. Samatov ◽  
Susanne Lezius ◽  
...  

Abstract Purpose:The transcription factor Fra-2 affects the invasive potential of breast cancer cells by dysregulating adhesion molecules in vitro. Previous results suggested that it upregulates the expression of E- and P-selectin ligands. Such selectin ligands are important members of the leukocyte adhesion cascade, which govern the adhesion and transmigration of cancer cells into the stroma of the host organ of metastasis. As so far, no in vivo data are available, this study was designed to elucidate the role of Fra-2 expression in a spontaneous breast cancer metastasis xenograft model. Methods:The effect of Fra-2 overexpression in two stable Fra-2 overexpressing clones of the human breast cancer cell line MDA MB231 on survival and metastatic load was studied after subcutaneous injection into scid and E- and P-selectin deficient scid mice.Results:Fra-2 overexpression lead to a significantly shorter overall survival and a higher amount of spontaneous lung metastases not only in scid mice, but also in E- and P-deficient mice, indicating that it regulates not only selectin ligands, but also selectin-independent adhesion processes. Conclusion:Thus, Fra-2 expression influences the metastatic potential of breast cancer cells by changing the expression of adhesion molecules, resulting in increased adherence to endothelial cells in a breast cancer xenograft model.

Author(s):  
Sabrina Arnold ◽  
Jan Kortland ◽  
Diana V. Maltseva ◽  
Stepan A. Nersisyan ◽  
Timur R. Samatov ◽  
...  

Abstract Purpose The transcription factor Fra-2 affects the invasive potential of breast cancer cells by dysregulating adhesion molecules in vitro. Previous results suggested that it upregulates the expression of E- and P-selectin ligands. Such selectin ligands are important members of the leukocyte adhesion cascade, which govern the adhesion and transmigration of cancer cells into the stroma of the host organ of metastasis. As so far, no in vivo data are available, this study was designed to elucidate the role of Fra-2 expression in a spontaneous breast cancer metastasis xenograft model. Methods The effect of Fra-2 overexpression in two stable Fra-2 overexpressing clones of the human breast cancer cell line MDA MB231 on survival and metastatic load was studied after subcutaneous injection into scid and E- and P-selectin-deficient scid mice. Results Fra-2 overexpression leads to a significantly shorter overall survival and a higher amount of spontaneous lung metastases not only in scid mice, but also in E- and P-deficient mice, indicating that it regulates not only selectin ligands, but also selectin-independent adhesion processes. Conclusion Thus, Fra-2 expression influences the metastatic potential of breast cancer cells by changing the expression of adhesion molecules, resulting in increased adherence to endothelial cells in a breast cancer xenograft model.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 853-853 ◽  
Author(s):  
Lindsey A Miles ◽  
Nagyung Baik ◽  
Stan Krajewski ◽  
Robert J Parmer ◽  
Barbara M Mueller

Abstract Abstract 853 The ability of tumor cells to bind plasminogen is highly correlated with their invasive and metastatic potential. Here we evaluate cell surface plasminogen binding in human breast cancer. In a xenograft model for aggressive, triple-negative human breast cancer, tumor cells harvested from orthotopic mammary fat pad (mfp) tumors of the invasive human breast cancer line, MDA-MB-231, exhibit dramatic increases in tumor growth and lung and lymph node metastases, compared to parental cells. The breast cancer cells isolated from the mfp have been designated as 231mfp cells. Although the levels of most secreted proteins are similar, the plasminogen activators, urokinase-type plasminogen activator (uPA) and tissue type plasminogen activator (tPA) are highly upregulated in 231mfp cells, compared with MDA-MB-231 parental cells, suggesting a role for the plasminogen activation system in the differences in growth and metastasis between these two cell lines (Jessani et al., Proc Natl Acad Sci USA 101:13756, 2004). Further evaluation of the plasminogen activation system in this model revealed that plasminogen bound to both 231mfp and MDA-MB-231 cells and plasminogen binding was specifically inhibited by the lysine analog, ε-aminocaproic acid (EACA). 231mfp cells exhibited a 3-fold greater capacity for plasminogen compared to MDA-MB-231 cells: Quantitative FACS analysis yielded a Bmax of 3.8 ± 0.5 × 105 plasminogen binding sites with a Kd of 1.2 μM for the 231 mfp cells and a Bmax of 1.2 ± 0.3 × 105 binding sites with a Kd of 1.5 μM for the parental cells. We recently discovered a novel cell surface receptor for plasminogen, Plg-RKT (Andronicos et al., Blood 115:1319, 2010). Plg-RKT enhances enzymatic activation of plasminogen to plasmin and localizes and spatially orients plasmin on the cell surface. We compared cell-surface expression of Plg-RKT on 231mfp and MDA-MB-231 cells using a specific monoclonal antibody raised against the C-terminus of human Plg-RKT, termed mAb7H1. In FACS analysis with mAB7H1, expression of Plg-RKT was markedly (5-fold) higher on 231mfp cells, compared to the parental cells. These data were confirmed in Western blotting. To further determine expression of Plg-RKT in breast cancer, human tissues were stained with anti-Plg-RKT antibodies. We found very high expression of Plg-RKT in human invasive ductal carcinoma and ductal carcinoma in situ and minimal expression in normal breast ducts and lobules in control subjects. We considered whether Plg-RKT expressed on breast cancer cells can a therapeutic target and we tested the ability of anti-Plg-RKT mAb7H1 to inhibit lung metastasis of 231mfp cells in immune deficient mice. Mice were injected into the tail vein with cells either mixed with mAb7H1 or with buffer control. The antibody-treated group received a second dose of mAb7H1 24 hr later. Four weeks after tumor cell injection, mice were sacrificed and tumor foci on the lungs were compared between the two groups. Anti-Plg-RKT mAb7H1 markedly reduced the number of 231mfp lung metastases per mouse: mean number of lung foci in the mAb7H1 treated group was 109 (± 47.8) and in the vehicle-treated control group 270.4 (± 61.7), probability of no difference between the groups by t-test P<0.05. The size distribution of the individual foci was not different between the groups. These data demonstrate that anti-Plg-RKT mAb7H1 has activity in the mouse model of metastatic breast cancer and suggest that it interferes with an early step in the establishment of lung metastases. In summary, the highly metastatic 231mfp breast cancer cells have increased plasminogen binding capacity and increased expression of the plasminogen receptor, Plg-RKT, compared to parental MDA-MB-231 cells. Plg-RKT was highly expressed in human breast cancer tissue but not in normal mammary glands. Furthermore, anti-Plg-RKT mAb inhibited establishment of lung metastases in a model of human breast cancer. Therefore, the presence of Plg-RKT on breast cancer cells may represent a new control point in the establishment of breast cancer metastases. Disclosures: No relevant conflicts of interest to declare.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xinbo Qiao ◽  
Yixiao Zhang ◽  
Lisha Sun ◽  
Qingtian Ma ◽  
Jie Yang ◽  
...  

Tumor metastasis remains the main cause of breast cancer-related deaths, especially delayed breast cancer distant metastasis. The current study assessed the frequency of CD44-/CD24- breast cancer cells in 576 tissue specimens for associations with clinicopathological features and metastasis and investigated the underlying molecular mechanisms. The results indicated that higher frequency (≥19.5%) of CD44-/CD24- cells was associated with delayed postoperative breast cancer metastasis. Furthermore, CD44-/CD24- triple negative breast cancer (TNBC) cells spontaneously converted into CD44+/CD24- cancer stem cells (CSCs) with properties similar to CD44+/CD24- CSCs from primary human breast cancer cells and parental TNBC cells in terms of stemness marker expression, self-renewal, differentiation, tumorigenicity and lung metastasis in vitro and in NOD/SCID mice. RNA sequencing identified several differentially expressed genes (DEGs) in newly converted CSCs and RHBDL2, one of the DEGs, expression was up-regulated. More importantly, RHBDL2 silencing inhibited the YAP1/USP31/NF-κB signaling and attenuated spontaneous CD44-/CD24- cell conversion into CSCs and their mammosphere formation. These findings suggest that the frequency of CD44-/CD24- tumor cells and RHBDL2 may be valuable for prognosis of delayed breast cancer metastasis, particularly for TNBC.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3071
Author(s):  
Jagyeong Oh ◽  
Davide Pradella ◽  
Yoonseong Kim ◽  
Changwei Shao ◽  
Hairi Li ◽  
...  

Breast cancer is the most frequently occurred cancer type and the second cause of death in women worldwide. Alternative splicing (AS) is the process that generates more than one mRNA isoform from a single gene, and it plays a major role in expanding the human protein diversity. Aberrant AS contributes to breast cancer metastasis and resistance to chemotherapeutic interventions. Therefore, identifying cancer-specific isoforms is the prerequisite for therapeutic interventions intended to correct aberrantly expressed AS events. Here, we performed RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq) in breast cancer cells, to identify global breast cancer-specific AS defects. By RT-PCR validation, we demonstrate the high accuracy of RASL-seq results. In addition, we analyzed identified AS events using the Cancer Genome Atlas (TCGA) database in a large number of non-pathological and breast tumor specimens and validated them in normal and breast cancer samples. Interestingly, aberrantly regulated AS cassette exons in cancer tissues do not encode for known functional domains but instead encode for amino acids constituting regions of intrinsically disordered protein portions characterized by high flexibility and prone to be subjected to post-translational modifications. Collectively, our results reveal novel AS errors occurring in human breast cancer, potentially affecting breast cancer-related biological processes.


2008 ◽  
Vol 29 (10) ◽  
pp. 1885-1892 ◽  
Author(s):  
I. T. Nizamutdinova ◽  
G. W. Lee ◽  
J. S. Lee ◽  
M. K. Cho ◽  
K. H. Son ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Heshu Liu ◽  
Tao Wen ◽  
Ying Zhou ◽  
Xiaona Fan ◽  
Tan Du ◽  
...  

Background. Doublecortin-like kinase 1 (DCLK1) has been universally identified as a cancer stem cell (CSC) marker and is found to be overexpressed in many types of cancers including breast cancer. However, there is little data regarding the functional role of DCLK1 in breast cancer metastasis. In the present study, we sought to investigate whether and how DCLK1 plays a metastatic-promoting role in human breast cancer cells.Methods. We used Crispr/Cas9 technology to knock out DCLK1 in breast cancer cell line BT474, which basically possesses DCLK1 at a higher level, and stably overexpressed DCLK1 in another breast cancer cell line, T47D, that basically expresses DCLK1 at a lower level. We further analyzed the alterations of metastatic characteristics and the underlying mechanisms in these cells.Results. It was shown that, compared with the corresponding control cells, DCLK1 overexpression led to an increase in metastatic behaviors including enhanced migration and invasion of T47D cells. By contrast, forced depletion of DCLK1 drastically inhibited these metastatic characteristics in BT474 cells. Mechanistically, the epithelial-mesenchymal transition (EMT) program, which is critical for cancer metastasis, was prominently activated in DCLK1-overexpressing cancer cells, evidenced by a decrease in an epithelial marker ZO-1 and an enhancement in several mesenchymal markers including ZEB1 and Vimentin. In addition, DCLK1 overexpression induced the ERK MAPK pathway, which resultantly enhanced the expression of MT1-MMP that is also involved in cancer metastasis. Knockout of DCLK1 could reverse these events, further supporting a metastatic-promoting role for DCLK1.Conclusions. Collectively, our data suggested that DCLK1 overexpression may be responsible for the increased metastatic features in breast cancer cells. Targeting DCLK1 may become a therapeutic option for breast cancer metastasis.


Sign in / Sign up

Export Citation Format

Share Document