scholarly journals Relationship Between Forest Strata Structure and Regeneration in the Subtropical Evergreen Broad-Leaved Forest

2020 ◽  
Author(s):  
Junsong Long ◽  
Mengping Tang ◽  
Guangsheng Chen

Abstract Background: Regeneration is an extremely important and complex ecological process, which is disturbed by many factors. The current stand structure has an important influence on regeneration. The aim of this study is to provide theoretical reference for improving the regeneration capacity subtropical evergreen broad-leaved forest and formulating management measures of regeneration restoration.Methods: A permanent plot of 100m × 100m was set up in the evergreen broad-leaved forest of Tianmu Mountain National Nature Reserve, Zhejiang Province, China. The plot was divided into 25 survey units of 20m × 20m by the adjacent grid survey method, and all the trees in the plot were investigated. The tree height, DBH, crown width, density, species richness index, aggregation index, competition index and mingling of each forest stratum were used as the stand structure index. The tree height, DBH, crown width, density and species richness index of regeneration trees were used as regeneration indicators. Redundancy analysis (RDA) was used to explore the relationship between forest strata structure and regeneration of evergreen broad-leaved forest. Results: In the whole stand, DBH, tree species richness index and crown width were the main structure factors affecting regeneration. In the upper forest stratum, the tree height was the main structure factor affecting regeneration. In the middle forest stratum, the tree species richness index and crown width were the main factors affecting regeneration. In the lower forest stratum, crown width, competition index, tree height and tree species richness index were the main factors affecting regeneration. The effects of tree species richness index and crown width on regeneration in the whole stand were mainly reflected in the middle and lower forest strata in each forest stratum. Conclusions: The influencing order of each forest stratum structure on regeneration was: lower forest stratum > middle forest stratum > upper forest stratum. Different regeneration indicators had different responses to the main stand structure indices, while the young tree height and DBH, and the tree species diversity and density of regeneration trees were most affected by the main stand structure indices. In order to promote the regeneration of evergreen broad-leaved forest in the future, different management measures should be taken for different forest strata, and the threshold value of each index should be controlled.

2020 ◽  
Author(s):  
Junsong Long ◽  
Mengping Tang

Abstract Background: Regeneration is an extremely important and complex ecological process, which is disturbed by many factors. The current stand structure has an important influence on regeneration. The aim of this study is to provide theoretical reference for improving the regeneration capacity subtropical evergreen broad-leaved forest and formulating management measures of regeneration restoration.Methods: A permanent plot of 100m × 100m was set up in the evergreen broad-leaved forest of Tianmu Mountain National Nature Reserve, Zhejiang Province, China. The plot was divided into 25 survey units of 20m × 20m by the adjacent grid survey method, and all the trees in the plot were investigated. The tree height, DBH, crown width, density, species richness index, aggregation index, competition index and mingling of each forest stratum were used as the stand structure index. The tree height, DBH, crown width, density and species richness index of regeneration trees were used as regeneration indicators. Redundancy analysis (RDA) was used to explore the relationship between forest strata structure and regeneration of evergreen broad-leaved forest. Results: In the whole stand, DBH, tree species richness index and crown width were the main structure factors affecting regeneration. In the upper forest stratum, the tree height was the main structure factor affecting regeneration. In the middle forest stratum, the tree species richness index and crown width were the main factors affecting regeneration. In the lower forest stratum, crown width, competition index, tree height and tree species richness index were the main factors affecting regeneration. The effects of tree species richness index and crown width on regeneration in the whole stand were mainly reflected in the middle and lower forest strata in each forest stratum. Conclusions: The influencing order of each forest stratum structure on regeneration was: lower forest stratum > middle forest stratum > upper forest stratum. Different regeneration indicators had different responses to the main stand structure indices, while the young tree height and DBH, and the tree species diversity and density of regeneration trees were most affected by the main stand structure indices. In order to promote the regeneration of evergreen broad-leaved forest in the future, different management measures should be taken for different forest strata, and the threshold value of each index should be controlled.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247339
Author(s):  
Junsong Long ◽  
Mengping Tang ◽  
Guangsheng Chen

The vertical stratification of the stand may lead to a high heterogeneity of microenvironment in the forest, which further influences the understory regeneration and succession of the forest. Most relevant previous studies emphasized the overall effects of the Whole-stand structural characteristics on understory regeneration, while the strata-specific impacts of the overstory should be explored especially for those forests with a complicated combination of overstory species and heights. In this study, a subtropical evergreen broad-leaved forest in Tianmu Mountain of China was intensively investigated within 25 plots of 20 m × 20 m, aiming to find out how significant the stratified overstory (trees with diameter at breast height (DBH) ≥ 5 cm) structure and non-structure characteristics impact the understory (trees with DBH < 5 cm) regeneration. Regardless of species composition, the studied overstory was evenly divided into three strata (i.e. upper, middle and lower strata) according to their heights. Redundancy analysis was applied to explore both overall and strata-specific forest structure on characteristics (height, DBH, species diversity, and density) of tree regeneration. We found that the overall effect of the whole overstory on the forest regeneration depended mostly on diameter at breast height (DBH), tree species richness index and crown width. However, when analyzing with the strata-specific characteristics, the most pronounced impact factors for the regeneration were tree height of the upper and lower forest strata, tree species richness index and crown width of the middle and lower forest strata, and the competition index impact of the lower forest stratum. Among the three strata, the lower forest stratum showed the most significant impact with three characteristics on the understory regeneration, which may be attributed to their direct competition within the overlapping near-ground niches. Among the new generations, seedlings and saplings were more sensitive to the overstory structural characteristics than young trees. Our results suggest that the overstory showed strata-specific effects on the understory regeneration of evergreen broad-leaved forests in subtropical China, which provides theoretical basis for strata-specific forest management in similar forests.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 737
Author(s):  
Bohdan Konôpka ◽  
Vladimír Šebeň ◽  
Jozef Pajtík ◽  
Lisa A. Shipley

Large wild herbivores are important and natural components of forest ecosystems, but through their browsing activities have the potential to influence the structure and composition of forest communities, thus timber production and ecosystem dynamics. To examine the effects of browsing by wild herbivores on a young post-disturbance forest in the Kysuce region of northwestern Slovakia, we established two sets of 2 m radius plots, 15 within a fenced area (5.12 ha) that excluded large wild herbivores, and 15 within an adjacent unfenced area. In each plot, we recorded the species, tree height, stem base diameter, and mutual geographic positions of trees. When we compared tree community characteristics between the unfenced and fenced plots, we found fewer and smaller broadleaved tree species, except silver birch (Betula pendula Roth.) in the unfenced plots. Although common rowan (Sorbus aucuparia L.) was the dominant species within fenced plots, where some individuals were over 6.0 m tall, this species was rare outside the fenced area and usually did not exceed 1.5 m. In contrast, Norway spruce (Picea abies Karts L.) was more abundant and taller within the unfenced area, likely released from competition by suppression of broadleaved trees by herbivores. In addition, fenced plots also showed twice the tree species richness (Shannon index) of unfenced ones. Despite changes in tree communities, total aboveground biomass stock was only slightly but significantly lower in the unfenced than the fenced plots (29.6 kg per 10 m2 vs. 33.5 kg per 10 m2). Our study suggested that browsing pressure by large wild herbivores that focused on most broadleaved trees weakened interspecies competition and allowed the expansion of Norway spruce. As a consequence, converting spruce monocultures to mixed species stands is likely unrealistic when faced with heavy browsing pressure by wild large herbivores.


2019 ◽  
Vol 29 (3) ◽  
pp. 799-815
Author(s):  
Victor P. Zwiener ◽  
André A. Padial ◽  
Márcia C. M. Marques

Sign in / Sign up

Export Citation Format

Share Document