scholarly journals An Energy Efficient Resource Allocation and Transmit Antenna Selection Scheme in mm-Wave Using Massive MIMO Technology

Author(s):  
Charanjeet Singh ◽  
P C Kishoreraja

Abstract The massive Multiple-Input Multiple-Output (MIMO) improves the reliability of transmission and capacity of the channel. Resource allocation (RA) and Transmit Antenna Selection (TAS) can minimize the complexity in implementation and hardware costs. In this research, both the RA as well as the TAS of wireless communication in millimetre- wave (mm-wave) with massive MIMO technology is considered. Two different solutions are developed for this research such as the Deep Learning method for efficient resource allocation process and optimization algorithm for Transmit Antenna Selection (TAS) process. Here, the RA process is done with the help of Attention Based Capsule Auto-Encoder (ACAE) architecture which allocates the radio resources like power, space, time and frequency to all the available users in the system. Further, Battle Royale Optimization (BRO) algorithm is utilized to select an efficient antenna from multiple antennas at BS. This optimization algorithm optimally selects an efficient antenna so that, user equipments (UEs) can create high quality links and achieves a reduced power consumption rate of the whole architecture. The overall system performance depends on the selection of optimal antenna which in terms enhances Spectral Efficiency (SE), Energy Efficiency (EE), reliability, and diversity gain of MIMO technology. In this way, both RA and optimal antenna selection schemes are performed to maximize the overall performance of wireless communication with massive MIMO technology for 5G wireless communication applications. The implementation of the proposed methodology is evaluated on MATLAB. Finally, the efficiency of the developed method is improved with respect to the capacity, EE and SE.

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Byung-Jin Lee ◽  
Sang-Lim Ju ◽  
Nam-il Kim ◽  
Kyung-Seok Kim

Massive multiple-input multiple-output (MIMO) systems are a core technology designed to achieve the performance objectives defined for 5G wireless communications. They achieve high spectral efficiency, reliability, and diversity gain. However, the many radio frequency chains required in base stations equipped with a high number of transmit antennas imply high hardware costs and computational complexity. Therefore, in this paper, we investigate the use of a transmit-antenna selection scheme, with which the number of required radio frequency chains in the base station can be reduced. This paper proposes two efficient transmit-antenna selection (TAS) schemes designed to consider a trade-off between performance and computational complexity in massive MIMO systems. The spectral efficiency and computational complexity of the proposed schemes are analyzed and compared with existing TAS schemes, showing that the proposed algorithms increase the TAS performance and can be used in practical systems. Additionally, the obtained results enable a better understanding of how TAS affects massive MIMO systems.


In massive MIMO systems, the selection of optimal transmits antennas remains as a major constraint. As the number of antennas is increased, the power or energy consumption also increases. Selection of optimal transmit antennas is considered as a multi objective problem, where the energy has to be minimizedand the spectral efficiency (bandwidth) has to be increased. In fact, for attaining higher bandwidth, more transmit antennas have to be selected, which leads to increase in power consumption, In this proposal various papers are reviewed for Energy and Spectral Efficiency performance in Massive MIMO Technology through different algorithms and parameter comparisons are made to identify the better algorithms in terms of EE and SE to achieve the higher data transmission rates, BER, mitigating the inter Noise interference.


Massive MIMO Technology showed its unique characteristics and capabilities for future wireless communications where high data transmission rates are desired for fast growing 5G applications. High data transmission rates need more number of antennas at base station which comprised of increased system complexity and hardware cost. A proven method for reducing number of RF (radio frequency) chains at base station is Transmit Antenna Selection algorithm. In this paper an effective approach for TAS and optimizing the number of antennas at base station for desired data rates have been proposed and a Tradeoff between SE (Spectral Efficiency), EE (energy Efficiency) are discussed. MVGSA (modified velocity Gravitational Search algorithm) discussed for optimization of Transmit Antennas along with Improved SE and EE other effective algorithms are compared with multi objectives and data transmission rates. MVGSA proved with Improved SE and EE with Effective TAS.


Sign in / Sign up

Export Citation Format

Share Document