scholarly journals Implementation of Real Time Hybrid Simulation Based on GPU Computing

Author(s):  
Zhenyun Tang ◽  
Xiaohui Dong ◽  
Zhenbao Li ◽  
Xiuli Du

Abstract With combination of physical experiment and numerical simulation, real-time hybrid simulation (RTHS) can enlarge the dimensions of testing specimens and improve the testing accuracy. However, due to the limitation of computing capacity, the maximum degrees of freedom for numerical substructure are less than 2000 from the reported RTHS testing. It cannot meet the testing requirements for evaluating the dynamic performance of large and complex engineering structures. Taking advantages of parallel computing toolbox (PCT) in Matlab and high-performance computing of graphics processing unit (GPU). A RTHS framework based on MATLAB and GPU was established in this work. Using this framework, a soil-structure interaction system (SSI) was tested by a shaking table based RTHS. Meanwhile, the dynamic response of this SSI system was simulated by finite element analysis. The comparison of simulation and testing results demonstrated that the proposed testing framework can implement RTHS testing successfully. Using this method, the maximum degrees of freedom for numerical substructure can reach to 27,000, which significantly enhance the testing capacity of RTHS testing for large and complex engineering structures.

2021 ◽  
Author(s):  
Zhenyun Tang ◽  
Xiaohui Dong ◽  
Zhenbao Li ◽  
Xiuli Du

Abstract With combination of physical experiment and numerical simulation, real-time hybrid simulation (RTHS) can enlarge the dimensions of testing specimens and improve the testing accuracy. However, due to the limitation of computing capacity, the maximum degrees of freedom for numerical substructure are less than 7000 from the reported RTHS testing. It cannot meet the testing requirements for evaluating the dynamic performance of large and complex engineering structures. Taking advantages of parallel computing toolbox (PCT) in Matlab and high-performance computing of graphics processing unit (GPU). A RTHS framework based on MATLAB and GPU was established in this work. Using this framework, a soil-structure interaction system (SSI) was tested by a shaking table based RTHS. Meanwhile, the dynamic response of this SSI system was simulated by finite element analysis. The comparison of simulation and testing results demonstrated that the proposed testing framework can implement RTHS testing successfully. Using this method, the maximum degrees of freedom for numerical substructure can reach to 27,000, which significantly enhance the testing capacity of RTHS testing for large and complex engineering structures.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 840
Author(s):  
Xizhan Ning

Real-time hybrid simulation (RTHS), dividing the emulated structure into numerical substructures (NS) and physical substructures (PS), is a powerful technique to obtain responses and then to assess the seismic performance of civil engineering structures. A transfer system, a servo-hydraulic actuator or shaking table, is used to apply boundary conditions between the two substructures. However, the servo-hydraulic actuator is inherently a complex system with nonlinearities and may introduce time delays into the RTHS, which will decrease the accuracy and stability of the RTHS. Moreover, there are various uncertainties in RTHS. An accurate and robust actuator control strategy is necessary to guarantee reliable simulation results. Therefore, a mixed sensitivity-based H∞ control method was proposed for RTHS. In H∞ control, the dynamics and robustness of the closed-loop transfer system are realized by performance weighting functions. A form of weighting function was given considering the requirement in RTHS. The influence of the weighting functions on the dynamics was investigated. Numerical simulations and actual RTHSs were carried out under symmetric and asymmetric dynamic loads, namely sinusoidal and earthquake excitation, respectively. Results indicated that the H∞ control method used for RTHS is feasible, and it exhibits an excellent tracking performance and robustness.


2018 ◽  
Vol 30 (5) ◽  
pp. 701-707 ◽  
Author(s):  
Seung-Hyun Eem ◽  
Jeong-Hoi Koo ◽  
Hyung-Jo Jung

This article investigates an adaptive mount system based on magnetorheological elastomer in reducing the vibration of an equipment on the isolation table. Incorporating MR elastomers, whose elastic modulus or stiffness can be adjusted depending on the applied magnetic field, the proposed mount system strives to alleviate the limitations of existing passive-type mount systems. The primary goal of this study is to evaluate the vibration reduction performance of the proposed MR elastomer mount using the hybrid simulation technique. For real-time hybrid simulations, the MR elastomer mount and the control system are used as an experimental part, which is installed on the shaking table, and an equipment on the table is used as a numerical part. A suitable control algorithm is designed for the real-time hybrid simulations to avoid the responses of the equipment’s natural frequency by tracking the frequencies of the responses. After performing a series of real-time hybrid simulation on the adaptive mount system and the passive-type mount system under sinusoidal excitations, this study compares the effectiveness of the adaptive mount system over its passive counterpart. The results show that the proposed adaptive elastomer mount system outperforms the passive-type mount system in reducing the responses of the equipment for the excitations considered in this study.


2021 ◽  
Author(s):  
Hongjie Zheng ◽  
Hanyu Chang ◽  
Yongqiang Yuan ◽  
Qingyun Wang ◽  
Yuhao Li ◽  
...  

<p>Global navigation satellite systems (GNSS) have been playing an indispensable role in providing positioning, navigation and timing (PNT) services to global users. Over the past few years, GNSS have been rapidly developed with abundant networks, modern constellations, and multi-frequency observations. To take full advantages of multi-constellation and multi-frequency GNSS, several new mathematic models have been developed such as multi-frequency ambiguity resolution (AR) and the uncombined data processing with raw observations. In addition, new GNSS products including the uncalibrated phase delay (UPD), the observable signal bias (OSB), and the integer recovery clock (IRC) have been generated and provided by analysis centers to support advanced GNSS applications.</p><p>       However, the increasing number of GNSS observations raises a great challenge to the fast generation of multi-constellation and multi-frequency products. In this study, we proposed an efficient solution to realize the fast updating of multi-GNSS real-time products by making full use of the advanced computing techniques. Firstly, instead of the traditional vector operations, the “level-3 operations” (matrix by matrix) of Basic Liner Algebra Subprograms (BLAS) is used as much as possible in the Least Square (LSQ) processing, which can improve the efficiency due to the central processing unit (CPU) optimization and faster memory data transmission. Furthermore, most steps of multi-GNSS data processing are transformed from serial mode to parallel mode to take advantage of the multi-core CPU architecture and graphics processing unit (GPU) computing resources. Moreover, we choose the OpenBLAS library for matrix computation as it has good performances in parallel environment.</p><p>       The proposed method is then validated on a 3.30 GHz AMD CPU with 6 cores. The result demonstrates that the proposed method can substantially improve the processing efficiency for multi-GNSS product generation. For the precise orbit determination (POD) solution with 150 ground stations and 128 satellites (GPS/BDS/Galileo/GLONASS/QZSS) in ionosphere-free (IF) mode, the processing time can be shortened from 50 to 10 minutes, which can guarantee the hourly updating of multi-GNSS ultra-rapid orbit products. The processing time of uncombined POD can also be reduced by about 80%. Meanwhile, the multi-GNSS real-time clock products can be easily generated in 5 seconds or even higher sampling rate. In addition, the processing efficiency of UPD and OSB products can also be increased by 4-6 times.</p>


1997 ◽  
Vol 119 (3) ◽  
pp. 439-447 ◽  
Author(s):  
M. P. Castanier ◽  
G. O´ttarsson ◽  
C. Pierre

The analysis of the response statistics of mistuned turbomachinery rotors requires an expensive Monte Carlo simulation approach. Simple lumped parameter models capture basic localization effects but do not represent well actual engineering structures without a difficult parameter identification. Current component mode analysis techniques generally require a minimum number of degrees of freedom which is too large for running Monte Carlo simulations at a reasonable cost. In the present work, an order reduction method is introduced which is capable of generating reasonably accurate, very low order models of tuned or mistuned bladed disks. This technique is based on component modes of vibration found from a finite element analysis of a single disk-blade sector. It is shown that the phenomenon of mode localization is well captured by the reduced order modeling technique.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Robert M. Panas ◽  
Jonathan B. Hopkins

We present an improved flexure linkage design for removing underconstraint in a double parallelogram (DP) linear flexural mechanism. This new linkage alleviates many of the problems associated with current linkage design solutions such as static and dynamic performance losses and increased footprint. The improvements of the new linkage design will enable wider adoption of underconstraint eliminating (UE) linkages, especially in the design of linear flexural bearings. Comparisons are provided between the new linkage design and existing UE designs over a range of features including footprint, dynamics, and kinematics. A nested linkage design is shown through finite element analysis (FEA) and experimental measurement to work as predicted in selectively eliminating the underconstrained degrees-of-freedom (DOF) in DP linear flexure bearings. The improved bearing shows an 11 × gain in the resonance frequency and 134× gain in static stiffness of the underconstrained DOF, as designed. Analytical expressions are presented for designers to calculate the linear performance of the nested UE linkage (average error < 5%). The concept presented in this paper is extended to an analogous double-nested rotary flexure design.


Author(s):  
Khaled Ragab

Automating fabric defect detection has a significant role in fabric industries. However, the existing fabric defect detection algorithms lack the real-time performance that is required in real applications due to their high demanding computation. To ensure real time, high accuracy and reliable fabric defect detection this paper developed a fast and parallel normalized cross-correlation algorithm based on summed-area table technique called PFDD-SAT. To meet real-time requirements, extensive use of the NVIDIA CUDA framework for Graphical Processing Unit (GPU) computing is made. The detailed implementation steps of the PFDD-SAT are illustrated in this paper. Several experiments have been carried out to evaluate the detection time and accuracy and then the robustness to illumination and Gaussian noises. The results show that the PFDD-SAT has robustness to noise and speeds the defect detection process more than 200 times than normal required time and that greatly met the needs for real-time automatic fabric defect detection.


2019 ◽  
Vol 9 (21) ◽  
pp. 4495 ◽  
Author(s):  
Mucha

Hybrid simulation is a technique for testing mechanical systems. It applies to structures with elements hard or impossible to model numerically. These elements are tested experimentally by straining them by means of actuators, while the rest of the system is simulated numerically using a finite element method (FEM). Data is interchanged between experiment and simulation. The simulation is performed in real-time in order to accurately recreate the dynamic behavior in the experiment. FEM is very computationally demanding, and for systems with a great number of degrees of freedom (DOFs), real-time simulation with small-time steps (ensuring high accuracy) may require powerful computing hardware or may even be impossible. The author proposed to swap the finite element (FE) model with an artificial neural network (ANN) to significantly lower the computational cost of the real-time algorithm. The presented examples proved that the computational cost could be reduced by at least one number of magnitude while maintaining high accuracy of the simulation; however, obtaining appropriate ANN was not trivial and might require many attempts.


Sign in / Sign up

Export Citation Format

Share Document